
Journal of Pure and Applied Algebra 213 (2009) 2075–2086

Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

journal homepage: www.elsevier.com/locate/jpaa

On secant varieties of compact Hermitian symmetric spacesI

J.M. Landsberg a,∗, Jerzy Weyman b
a Texas A & M University, Department of Mathematics, Mailstop 3368, College Station, TX-77843 Texas, United States
b Northeastern University, Department of Mathematics, Boston, MA 02115, United States

a r t i c l e i n f o

Article history:
Received 18 March 2008
Received in revised form 4 February 2009
Available online 10 April 2009
Communicated by A.V. Geramita

MSC:
14M17
13D02
32M15
13P99
14Q15
15A69

a b s t r a c t

We show that the secant varieties of rank three compact Hermitian symmetric spaces in
their minimal homogeneous embeddings are normal, with rational singularities. We show
that their ideals are generated in degree three—with one exception, the secant variety of
the 21-dimensional spinor variety in P63 where we show that the ideal is generated in
degree four. We also discuss the coordinate rings of secant varieties of compact Hermitian
symmetric spaces.
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1. Introduction

Let K be an algebraically closed field of characteristic zero, let V = KN+1, let X ⊂ PV = PN be a projective variety, and
let σ(X) ⊂ PV denote its secant variety, the Zariski closure of the set of points on the secant lines to X . Recently there has
been interest in the ideals of secant varieties of homogeneous varieties [1–8], and this paper contributes to their study.
If the ideal of a variety X is generated in degree two, the minimal possible degree of generators for the ideal of σ(X)

is three ([5] Cor. 3.2), although in general one does not expect generators in degree three (e.g. this almost always fails for
complete intersections of quadrics). On the other hand, when X is homogeneous, i.e., V is an irreducible G-module where
G is a semi-simple algebraic group and X is the orbit of a highest weight line (so in particular, the ideal of X is generated in
degree two), in all previously known examples (mostly just the rank two compact Hermitian symmetric spaces), the ideal
of σ(X) is generated in degree three.
In this paperwe determine the generators of the ideals of the secant varieties of rank three compact Hermitian symmetric

spaces in their minimal homogeneous embeddings, which we abbreviate CHSS. There is one surprise, the ideal of the secant
variety of the D7 spinor variety is not generated in degree three, which answers a question posed in [5], Section 3. Recently,
L. Manivel has made significant progress towards determining the generators of the ideals of secant varieties of spinor
varieties in general, see [9].
While determining the generators of the ideals of secant varieties of higher rank CHSS seems out of reach at themoment,

we show that for all CHSS other than spinor varieties, there are indeed generators in degree three.
Regarding singularities of secant varieties, we show:
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Theorem 1.1. Let X ⊂ PV be a rank three CHSS in its minimal homogeneous embedding. Then σ(X) is normal, with rational
singularities.

Let G/Pj ⊂ PVωj denote the embedded rational homogeneous variety where Pj is the maximal parabolic associated to
the simple root αj, using the ordering of the roots as in [10]. Among the rank three CHSS are the Legendrian varieties,
E7/P7,D6/P6, A5/P3 = G(3, K 6), C3/P3 = GLag(3, K 6), and Seg(P1 × Q ) (where the last is the Segre product of a P1 with a
quadric hypersurface), which have the property that their secant varieties are the ambient PV , so there is no need to study
their ideals and singularities.
Let SπW denote the irreducibleGL(W )-module associated to the partitionπ . The generators of the ideals in the remaining

cases are as follows:

Theorem 1.2. Let dimW ≥ 7. The ideal of the secant variety of the Grassmannian of 3-planes in its Plucker embedding,
σ(G(3,W ∗)) ⊂ PΛ3W ∗ is generated in degree three by the SL(W )-module of highest weight 2ω1 + ω7 occurring in S3(Λ3W ),
i.e., S3,16W = S3111111W ⊂ S

3(Λ3W ).

Warning: In an attempt to minimize the presence of ∗’s, when we study the ideal of a variety, we often write X ⊂ PV ∗
(as in Theorem 1.2), but when dealing with the variety directly we write X ⊂ PV (as in Theorem 1.1).
Theorem 1.2 is proved in Section 5.

Theorem 1.3. Let X = S7 ⊂ P63 be the D7-spinor variety. Then the ideal of σ(X) is generated by the irreducible D7-module
with highest weight ω4 in degree four.

Theorem 1.3 is discussed in Section 6.
For a vector space A, let KS(A) ⊂ A⊗3 denote the kernel of the symmetrization map S2A⊗ A→ S3A, it is a GL(A)-module

isomorphic to S21A. We let πS : (A⊗ B)⊗3 → (A⊗ B)⊗3 denote the symmetrization map whose image is S3(A⊗ B).

Theorem 1.4. Let Y ⊂ PW ∗ be a rank two CHSS in its minimal homogeneous embedding other than a quadric hypersurface, so
that X := Seg(PA∗ × Y ) ⊂ P(A∗ ⊗ W ∗) is a reducible rank three CHSS in its minimal homogeneous embedding (other than
Seg(P1 × Q )). Let I3(σ (Y )) ⊂ S3W and S1(Y ) ⊂ KS(W ) respectively denote the modules generating the ideal of the secant
variety of Y and the space of linear syzygies for the ideal of Y . Then the ideal of σ(X) is generated in degree three by

Λ3A⊗Λ3W , S3A⊗ I3(σ (Y )), and πS(KS(A)⊗ S1(Y )).

Explicitly, the modules are

Y I3(σ (Y )) S1(Y )

G(2, 6) K V Anω1+ω5
G(2, n+ 1), n ≥ 6 V Anω6 V Anω1+ω5
Seg(PB∗ × PC∗) Λ2B⊗Λ2C (S21B⊗Λ2C)⊕ (Λ3B⊗ S21C)

S5 0 V d5
ω4

OP2 K V e6
ω2

The degree three statement in Theorem 1.4 is a consequence of the more general result:

Proposition 1.5. Let Y ⊂ PA∗ and Z ⊂ PB∗ be varieties and let Seg(Y × Z) ⊂ P(A∗ ⊗ B∗) denote their Segre product. Let
I3(σ (Y )) ⊂ S3W and S1(Y ) ⊂ KS(W ) respectively denote the modules generating the ideal of the secant variety of Y and the
space of linear syzygies for the ideal of Y and similarly for Z. Then

I3(σ (Seg(Y × Z))) = Λ3A⊗Λ3B ⊕ πS(S1(Y )⊗ KS(B)⊕ KS(A)⊗ S1(Z)) ⊕ I3(σ (Y ))⊗ S3B ⊕ S3A⊗ I3(σ (Z)).

Theorem 1.4 and Proposition 1.5 are proven in Section 7.
For higher rank irreducible CHSS we have the following result, which is proved in Section 3:

Proposition 1.6. The ideal of σ(G(k, Km)) ⊂ PV ∗ωk = P(ΛkKm) with m ≥ 2k contains the irreducible Am−1-modules
V2ωk−2+ωk+4 ⊕ Vωk−4+2ωk+2 ∈ S

3Vωk among its generators.

In [9] it is shown thatD7/P7,D8/P8 in theirminimal homogeneous embeddings are the only spinor varietieswhose secant
varieties have empty ideal in degree three, thus these are the only CHSS not having cubics in the ideal of its secant variety.
(Segre products and Veronese re-embeddings of any varieties contain cubics in the ideals of their secant varieties as there
are cubics in the ideals of the Segre products and Veronese embeddings of projective spaces.)
In Section 8we discuss the coordinate ring of σ(X) for arbitrary rational homogeneous varieties. A key point is that when

X ⊂ PV is homogeneous, σ(X) is the closure of the orbit of the sum of a highest weight vector and a lowest weight vector.
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We obtain our results using the methods of [11], as described in Theorem 2.1, along with some new results about
induced representations. In brief, in each case we obtain a desingularization of σ(X), by exploiting that fact that each X
has a Legendrian ‘‘smaller cousin’’, and apply Weyman’s method to this desingularization.
The case of Seg(PA∗ × Q ) ⊂ P(A∗ ⊗W ∗) is immediate as σ(Seg(PA∗ × Q )) = σ(Seg(PA∗ × PW ∗)).

Notation. For a variety Z ⊂ PV , we let Ẑ ⊂ V denote the corresponding cone. We adopt the following conventions: K
is an algebraically closed field of characteristic zero, G is a complex semi-simple algebraic group, P a parabolic subgroup,
X = G/P ⊂ PV denotes a rational homogeneous variety in its minimal homogeneous embedding. We use German letters
to denote Lie algebras associated to algebraic groups. We use the ordering of roots as in [10]. The fundamental weights
and the simple roots of g are respectively denoted ωi and αi. Pk denotes the maximal parabolic of G obtained by deleting
the root spaces corresponding to negative roots having a nonzero coefficient on the simple root αk. More generally, for
J = (j1, . . . , js), PJ denotes the parabolic obtained by deleting the negative root spaces having a nonzero coefficient on
any of the simple roots αj1 , . . . , αjs . Λg,ΛG respectively denote the weight lattices of g, G, and Λ+g ⊂ Λg, Λ+G ⊂ ΛG the
dominant weights. We let L ⊂ P be a (reductive) Levi factor and f = [l, l] a semi-simple Levi factor. We write p = l + n,
where n is nilpotent. V g

λ denotes the irreducible g-module with highest weight λ and we often supress g in the notation.
Unless otherwise noted, G will be simply connected so Λ+G = Λ+g and we will freely switch from rational G-modules to
g-modules.
When dealing with an-modules we sometimes use partitions to index highest weights, with the dictionary π =

(p1, . . . , pn+1) corresponds to the weight (p1−p2)ω1+ (p2−p3)ω2+· · ·+ (pn−pn+1)ωn. Wewrite SπK n for the associated
module. Sometimes we abbreviate a partition (i1, . . . , i1, i2, . . . , i2, . . . , ik, . . . , ik) = ((i1)a1 , (i2)a2 , . . . , (ik)ak) where is
occurs as times.

2. Method of proof

2.1. The basic theorem of [11]

Theorem 2.1 ([11]). Let Y ⊂ PV be a variety and suppose there is a projective varietyB and a vector bundle q : E → B that is
a subbundle of a trivial bundle V → B with V z ' V for z ∈ B such that PE → Y is a desingularization of Y . Write η = E∗ and
ξ = (V/E)∗.
If the sheaf cohomology groups H i(B, Sdη) are all zero for i > 0 and d > 0 and if the linear maps H0(B, Sdη) ⊗ V ∗ →

H0(B, Sd+1η) are surjective for all d ≥ 0, then

(1) Ŷ is normal, with rational singularities.
(2) The coordinate ring K [Ŷ ] satisfies K [Ŷ ]d ' H0(B, Sdη).
(3) The vector space ofminimal generators of the ideal of Y in degree d is isomorphic to Hd−1(B,Λdξ)which is also the homology
of the middle term of the complex

· · · → Λ2V ⊗ H0(B, Sd−2η) −→ V ⊗ H0(B, Sd−1η) −→ H0(B, Sdη)→ 0. (1)

(4) More generally,⊕j H j(B,Λi+jξ) tensored with Sym(V ) with degree shifted by−(i+ j) is isomorphic to the i-th term in the
minimal free resolution of Y .

(5) If moreover Y is a G-variety and the desingularization is G-equivariant, then the identifications above are as G-modules.

2.2. The basic theorem applies in our case

In this paper the desingularizations will all be by a homogeneous bundle PE such that the corresponding bundle η is
irreducible. In this case we have:

Proposition 2.2. Notations as above, if Y is a G variety,B = G/P and η is induced from an irreducible P-module, then the sheaf
cohomology groups H i(B, Sdη) are all zero for i > 0 and the linear maps H0(B, Sdη)⊗ V ∗ → H0(B, Sd+1η) are surjective for
all d ≥ 0. In particular all the conclusions of 2.1 apply.

Proof. An irreducible homogeneous bundle can have nonzero cohomology in at most one degree, but a quotient bundle
of a trivial bundle has nonzero sections, thus H0(B, η) is a nonzero irreducible module and all other H j(B, η) are zero. Let
f ⊂ p ⊂ g be a semi-simple Levi factor, so the weight lattice of f is a sublattice of the weight lattice of g, let tc denote the
complement of tf (the torus of f) in tg and let l = f+ tc denote the Levi factor of p. η is induced from an irreducible g0-module
U which is a weight space for tc having non-negative weight, say (w1, . . . , wp). The bundle η⊗d, corresponds to a module
which is U⊗d as an f-module and is a weight space with weight (dw1, . . . , dwp) for the action of tc . Thus Sdη is completely
reducible and each component of Sdη is very ample and in particular acyclic.
To prove the second assertion, consider the maps V ∗ ⊗ H0(B, Sr−1η) → H0(B, Srη). Note that H0(B, S jη) ⊂ S jV ∗.

The proof of Proposition 2.2 will be completed by Lemma 2.3 below applied to U and each irreducible component of
H0(B, Srη). �



2078 J.M. Landsberg, J. Weyman / Journal of Pure and Applied Algebra 213 (2009) 2075–2086

LetMg
g0
denote the sub-category of the category of g0-modules generated under direct sum by the irreducible g0-modules

with highest weight inΛ+g ⊂ Λ
+
g0
and note that it is closed under tensor product. LetMg denote the category of g-modules.

Define an additive functorF : Mg
g0
→ Mg which takes an irreducible g0-module with highest weight λ to the corresponding

irreducible g-module with highest weight λ.

Lemma 2.3. Let l ⊂ g and F be as above. Let U,W be irreducible l-modules Then

F (U ⊗W ) ⊆ F (U)⊗ F (W ).

Proof. Let N ⊂ P denote the unipotent radical of P . Any L-module W may be considered as a P-module where N acts
trivially. Saying V = F (W )means that V is the G-module parabolically induced fromW andW is the set of N-invariants of
V . The N-invariants of F (U)⊗ F (W ) contain U ⊗W . �

3. Proof of Proposition 1.6

Proof. We recall some facts from [5], Section 3. For any variety X ⊂ PW ∗ whose ideal is generated in degree two,
I3(σ (X)) = S3W ∩ (I2(X)⊗W )with the intersection being taken inside S2W ⊗W .
LetG be semi-simple, letW = Vλ and letX = G/P ⊂ PW ∗ be the orbit of a highestweight line. Assume that an irreducible

G-module Vµ appears in S3Vλ and does not appear in V2λ ⊗ Vλ, where V2λ is the unique submodule of S2Vλ isomorphic to
V2λ. Then Vµ must be in I3(σ (X)) as S2Vλ = I2(X)⊕ V2λ.
Let G = SL(n, K) and let W = ΛkKm = Vωk . It follows from the Pieri formulas that the modules V2ωk−2+ωk+4 and

Vωk−4+2ωk+2 do not occur in V2ωk ⊗ Vωk . To see that they occur in S
3W , identify Vωk with Λ

k(K n) where K n has a basis
{e1, . . . , en}. First observe thatΛ6(K 6) ⊂ S3(Λ2(K 6)), in fact if (f1, . . . , f6) is a basis of K 6, then the inclusion takes it to the
Pfaffian

f1 ∧ · · · ∧ f6 7→
∑
σ

sgn(σ )(fσ(1) ∧ fσ(2)) ◦ (fσ(3) ∧ fσ(4)) ◦ (fσ(5) ∧ fσ(6)) (2)

where we sum over all permutations σ ∈ S6 satisfying

σ(1) < σ(2), σ (3) < σ(4), σ (5) < σ(6), σ (1) < σ(3) < σ(5).

Now consider K 6 ⊂ K n as the span of {ek−1, . . . , ek+4}, we produce a highest weight vector of V2ωk−2+ωk+4 by wedging
each term fi ∧ fj = ei+k−2 ∧ ei+k−2 in the summation (2) with e1 ∧ · · · ∧ ek−2. We leave it to the reader to check that the
resulting vector has the desired properties. The module Vωk−4+2ωk+2 occurs in S

3W as well by symmetry (or one can define
an analogous map). �

4. Desingularizations for secant varieties of rank 3 CHSS

In our situation the desingularizations are based on the observation that in each case X is swept out by the union of
Legendrian varieties Xsmall and σ(X) is the union of the σ(Xsmall)’s which are linear spaces.
Here is a table of X, Xsmall,B and the desingularizing bundle E overB:

X Xsmall B = base E = bundle

G(3,U) G(3, 6) G(6,U) Λ3RU
S7 S6 Q 12 Spin(p⊥/p̂)

PA× Y P1 × Q G(2, A)× YQ RA⊗ S

Here, for the last case, if Y = G/P ⊂ PW , YQ = G/P ′ is the variety obtained via Tits’ shadows that parametrizes a space
of quadric sections of Y (see [12], Section 2). One takes the marked Dynkin diagram for Y ⊂ PW and looks for the largest
subdiagram whose resulting marked diagram is a quadric hypersurface. The marked diagram of YQ is obtained by marking
all nodes bounding the nodes of the subdiagram corresponding to the quadric hypersurface. The irreducible homogeneous
bundle S → YQ is obtained from the irreducible p-module of highest weight equal to the highest weight ofW (where we
have included the weight lattice of the Levi factor of p into the weight lattice of g). As such, it is an irreducible sub-bundle
of the trivial bundle with fiberW and satisfies the hypotheses of Proposition 2.2.

Example 1. Here are the relevant spaces for X = PA× E6/P1 (see Fig. 1):

Here is a table for the cases X = PA× Y :
Y YQ dimQ

PB× PC G(2, B)× G(2, C) 2
G(2,W ) G(4,W ) 4

S5 Q 8 6
E6/P1 E6/P6 8
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Fig. 1. Shadow of YQ = E6/P6 on Y = E6/P1 is a Q 8 = D5/P1 .

When dimQ = 2k, we have a uniform model, W = Jn(B), where Jn(B) is the Jordan algebra of n × n B-Hermitian
symmetric matrices. In this model σ(Y ) is the set of rank at most 2 elements with ideal generated by the 3 × 3 minors.
(In the case B = O the octonions, we have n = 3 and care must be taken when defining the determinant.) In these cases
the fiber of S is isomorphic to J2(B).
When Y = S5 we haveW ' S5 ' Λ

evenK 5 and the fiber of S is isomorphic toΛevenK 4.

Lemma 4.1. Let σ̃ denote the total space of E. The image of q : σ̃ → V is σ̂ (X) and q : σ̃ → σ̂ (X) is a resolution of singularities
of σ̂ (X).

Proof. In each case, the fiber Ex ⊂ Vx = V over x ∈ B is σ̂ (Xsmall,x) = Ex ⊂ V and Xsmall,x ⊂ X by construction, so the image
of q is contained in σ̂ (X). On the other hand, they both have the same dimension and σ̂ (X) is reduced and irreducible. Thus
we need only show that themap is generically one to one. It is clear that q restricted to each fiber is generically one to one, so
it is sufficient to show that there is a unique fiber over a general point. For σ(G(3,W )), a general point determines a unique
6 plane inW . For σ(Seg(PA× Y )), a general point clearly determines a unique 2-plane A′ in A. When Y 6= S5, two elements
of Y in general position lie in a unique J2(B) and the unique fiber is A′ ⊗ J2(B). (The intersection Y ∩ PJ2(B) is the set of
rank one elements in J2(B), i.e., a quadric of dimension dimB, see, e.g., [13], chapter VI or [14].) For the case Y = S5, fix an
isotropic line L ⊂ K 10, the set {F ∈ S5 | L ⊂ F} is the shadow of L in S5 and the span of this shadow is the image of the fiber
over [L] ∈ Q 8 in K 16. Two general points F , F ′ ∈ S5, considered as P4’s in Q 8 will intersect in a point, i.e., an isotropic line in
K 10, which determines the unique fiber above a general point in their linear span.
Finally for the case X = S7, the same argument for S5 applies, as it is still true two general F , F ′ ∈ S7 will intersect in an

isotropic line. �

Lemma 4.1 combined with Theorem 2.1 and Proposition 2.2 prove Theorem 1.1.
We now proceed with a case by case study.

5. Case of X = G(3,W ∗)

Proof of Theorem 1.2. Let

Rp(ΛkW ∗) = {T ∈ ΛkW ∗ | ∃K p ⊂ W ∗ such that T ∈ ΛkK p}

Rp(ΛkW ∗) is called a rank variety (or subspace variety). Such varieties are discussed in detail in ([11], Section 7). Their ideals
are easy to describe, namely Id(Rp(ΛkW ∗)) consists of all modules corresponding to copies of SπW occurring in Sd(ΛkW )
where `(π) > p. However it is in general difficult to determine generators of the ideal. Rp(ΛkW ∗) is desingularized by
ΛkS → G(p,W ∗), and the corresponding bundle ξ = (ΛkW ∗/ΛkS)∗ in general is not irreducible. When p = dimW − 1
however ξ is irreducible, which will be the key to our proof.

Proposition 5.1. σ̂ (G(3,W ∗)) = R6(Λ3W ∗).

Proof. A general point of σ̂ (G(3,W ∗)) is of the form v1 ∧ v2 ∧ v3+ v4 ∧ v5 ∧ v6, so σ̂ (G(3,W ∗)) ⊆ R6(Λ3W ∗) because the
latter is compact and the former is connected. But both varieties are of the same dimension 6(dimW )− 17 and are reduced
and irreducible so they must be equal. �

Write V = Λ3W . We have

S3V = S33W ⊕ S32212W ⊕ S2313W ⊕ S316W .

The last module corresponds to a partition of length seven and thus by the remark above, it is among the generators of
I(R6(Λ3W ∗)) (because the ideal in degree two of any secant variety is empty), and the rest are not as their partitions have
length at most six.
To show there are no generators in degree greater than three, we need to prove exactness in themiddle step of (1) which

in this case is:

(S16W ⊕ S2211W )⊗ S
r−2(S111W ) ||π |≤6 → S111W ⊗ Sr−1(S111W ) ||π |≤6 → Sr(S111W ) ||π |≤6

for r > 3.
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The largest partition that can show up in the middle has length nine, so once we have solved the problem for G(3, K 9)
we are done.
Thus one could proceed by calculatingHd(G(6, K 9),Λd+1ξ)with the aid of a computer to conclude (although the passage

from the cohomology ofΛd+1gr(ξ) toΛd+1ξ might require some effort). We will proceed differently, resolving the cases of
dimW = 7, 8, 9 iteratively using rank varieties with p = dimW − 1.
For dimW = 7, the method in [11], Section 7.3 shows that the ideal of R6(Λ3W ) is generated by S316W and we are done.

For the next two cases we proceed indirectly, calculating the ideal of R7(Λ3K 8) (resp. R8(Λ3K 9)), and show these are in the
ideal generated by S316W to complete the proof.

Proposition 5.2. The ideal of the rank variety R6(Λ3K 7∗) is generated in degree three by S3,16K 7 included in S3(Λ3K 7) as
described in the recipe in the proof.
The ideal of the rank variety R7(Λ3K 8∗) is generated in degree four by S3,22,15K

8 included in S4(Λ3K 8) as described in the
recipe in the proof.
The ideal of the rank variety R8(Λ3K 9∗) is generated in degrees four and five by S4,18K

9 and S32,22,15K
9 respectively included

in S4(Λ3K 9) and S5(Λ3K 9) as described in the recipe in the proof.

Proof. Thanks to the irreducibility of ξ and its exterior powers, determination of modules generating the ideal is a
straightforward application of the methods of [11] and is left to the reader. It remains to show that the above modules
are all in the ideal generated by S316W . To do this we give explicit descriptions of the modules as spaces of polynomials.
Wewill encode the representations occurring in the d-th symmetric powers ofΛ3W by Young tableaux Dwith 3d boxes,

filled with the numbers 1, . . . , d with each number occurring three times. These tableaux are also assumed to be weakly
increasing in rows and strictly increasing in columns. We associate to such tableau D the map ρ(D)

ρ(D) : Λd
′
1W ⊗ · · · ⊗Λd

′
rW → Sd(Λ3W )

where π ′ = (d′1, . . . , d
′
r) is the conjugate partition to π = π(D), the partition associated to the Young diagram of D.

The map ρ(D) is defined as the composition of the following maps:

(a) assuming there are ei,s boxes filled with s in the i-th row, apply the embedding

Λd
′
iW → Λei,1W ⊗ · · · ⊗Λei,dW

for each row of D,
(b) Noting that for each s, e1,s + · · · + er,s = 3, wedge the factors coming from different rows corresponding to the same
number s in D, i.e., after rearranging the factors define the projection to (Λ3W )⊗d by sending, for each s,

Λe1,sW ⊗ · · · ⊗Λer,sW → Λ3W

and tensoring the results.
(c) Project (Λ3W )⊗d → Sd(Λ3W ) by symmetrizing.

We callD the numbering scheme associated to themapρ(D). It will give rise to an appropriate copy of Sπ(D)W ⊂ Sd(Λ3W ).
The four Schur functors mentioned in the statement of the lemma correspond to four numbering schemes.

D1 =
1 1 1 2 2 3 3
2
3

.

D2 =
1 1 1 2 2 3 3 4
2 4 4
3

.

D3 =

1 1 1 2 2 3 3 4 4
2
3
4

.

D4 =
1 1 1 2 2 3 3 4 5
2 4 4 5
3 5

.

It is clear that the images of the corresponding maps are in the ideals of corresponding rank varieties because of the
length of the first row of each numbering scheme.
Decomposing the domain and range of ρ(Di) into irreducible representations, in all four cases Sπ(Di)W is the only Schur

functor occurring in both the domain and range of ρ(Di), and it occurs there with multiplicity one. Thus it only remains to
see that the maps ρ(Dj) are nonzero, which is the purpose of the following lemma. �
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Lemma 5.3. The numbering schemes D1,D2,D3,D4 all yield nonzero modules.

Proof. We prove that the image of the map

ρ(D2) : Λ8W ⊗Λ3W ⊗W → S4(Λ3W )

corresponding to the numbering scheme

D2 =
1 1 1 2 2 3 3 4
2 4 4
3

is nonzero in S4(Λ3W ). The other cases are similar.
Consider the contribution to the monomial (e1 ∧ e2 ∧ e3)(e1 ∧ e2 ∧ e3)(e1 ∧ e4 ∧ e5)(e6 ∧ e7 ∧ e8) in the image of highest

weight vector ρ(D2)(e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6 ∧ e7 ∧ e8) ⊗ (e1 ∧ e2 ∧ e3) ⊗ (e1). All occurrences of this monomial can
be divided to 24 classes (corresponding to permutations of {1, 2, 3, 4}) according to the order in which the factors appear
in (Λ3W )⊗d after applying parts (a) and (b) of the definition of ρ(D2). In fact only two classes out of 24 are non-empty. The
factor e6 ∧ e7 ∧ e8 has to come from the first factor, and one of the factors e1 ∧ e2 ∧ e3 has to come from the fourth factor.
The factor e1 ∧ e4 ∧ e5 can come from the third factor (and this gives contribution 3 to the coefficient) or from the second
factor (and this gives contribution 1 to the coefficient). Thus the coefficient is nonzero and therefore ρ(D2) 6= 0. �

To finish the proof of Theorem 1.2 we need to show that the ideal generated by the first module contains the other
modules. But this is clear by the definition of maps ρ(D) and by the last part of the proof of Proposition 5.2 as the other
numbering schemes all contain the first. �

6. Case of X = S7

A desingularization of σ̂ (S7) ⊂ V
D7
ω7 is given by the sub-bundle of q : E → Q 12 = D7/P1 whose fiber is isomorphic to

σ̂ (S6) = V
D6
ω6 . Thus we can apply Theorem 2.1.

Note that VD7ω7 decomposes to V
D6
ω6 ⊕ V

D6
ω5 as a D6-module, and this splitting gives rise to the bundles ξ and η over

Q 12. Thus they are both irreducible and dual to one another. In this case it is straightforward to calculate H j(Λj+1ξ) if
one knows the decomposition of Λj+1VD6ω6 . In fact we calculated the entire minimal free resolution which is available at
http://www.math.neu.edu/~weyman/mathindex.html for the interested reader. In particular the only generator of the ideal
is the module Vω4 as stated in the theorem.

7. Case of σ(Seg(PA∗ × Y ))

Proof of Proposition 1.5. All spaces discussed in this section are to be considered as linear subspaces of (A ⊗ B)⊗3 =
A⊗3 ⊗ B⊗3 and all evaluations are as multi-linear forms. In particular, the symmetrization map

πS : (A⊗ B)⊗3→ (A⊗ B)⊗3

a1 ⊗ a2 ⊗ a3 ⊗ b1 ⊗ b2 ⊗ b3 7→
1
6

∑
σ∈S3

aσ(1) ⊗ aσ(2) ⊗ aσ(3) ⊗ bσ(1) ⊗ bσ(2) ⊗ bσ(3)

realizes S3(A⊗ B) ⊂ (A⊗ B)⊗3 as πS((A⊗ B)⊗3). Similarly we regard S2A⊗ A ⊂ A⊗3 as the image of the symmetrization
map x⊗ y⊗ z 7→ 1

2 (x⊗ y⊗ z + y⊗ x⊗ z) and likewise for S
2B⊗ B ⊂ B⊗3.

As mentioned in Section 3, for any variety X ⊂ PV , I3(σ (X)) = (I2(X)⊗ V ∗) ∩ S3V ∗. The GL(A)× GL(B) decomposition
of S3(A⊗ B) ⊂ (A⊗ B)⊗3 is:

S3(A⊗ B) = Λ3A⊗Λ3B⊕ πS(KS(A)⊗ KS(B))⊕ S3A⊗ S3B,

where KS(A) is the kernel of themap S2A⊗A→ S3A, which is a GL(A)-module isomorphic to S21A. In particular, if R ∈ KS(A),
we have R(u, v, w) = R(v, u, w) for all u, v, w ∈ A∗ and

R(u, v, u) = −
1
2
R(u, u, v) ∀u, v ∈ A∗ (3)

because R(u, v, w) + R(u, w, v) + R(v,w, u) + R(v,w, u) + R(w, u, v) + R(w, v, u) = 0, and setting w = u gives
2R(u, v, u)+ 2R(u, u, v)+ 2R(v, u, u) = 4R(u, v, u)+ 2R(u, u, v) = 0.
The factorΛ3A⊗Λ3B is in I3(σ (Seg(Y × Z))) because it is I3(σ (Seg(PA∗ × PB∗))).
By polarization and symmetry, a polynomial P ∈ S3V ∗ ⊂ V ∗⊗3 = {trilinear maps V × V × V → C} is in the ideal of

σ(X) if and only if P(x1, x1, x2) = 0 for all x1, x2 ∈ X̂ . In what follows we consider P as a trilinear form on V .

http://www.math.neu.edu/~weyman/mathindex.html
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By definition S1(Y ) = {T ∈ I2(Y )⊗ A | πS,A(T ) = 0}, where

πS,A(a1 ⊗ a2 ⊗ a3) =
∑
σ∈S3

aσ(1) ⊗ aσ(2) ⊗ aσ(3).

Elements of S1(Y ) ⊂ KS(A) have the property that as trilinear forms they vanish on any triple of the form (v, v,w) with
[v] ∈ Y andw arbitrary.
Any element of KS(A)⊗ KS(B) ⊂ (A⊗ B)⊗3 may be written as a sum

∑
Ri ⊗ Ti with Ri ∈ KS(A) and Ti ∈ KS(B), thus any

element of πS(KS(A)⊗ KS(B)) is of the form P = πS(
∑
Ri ⊗ Ti)with Ri ∈ KS(A) and Ti ∈ KS(B). We compute

1
2
P(v ⊗ z, v ⊗ z, w ⊗ y) =

∑
Ri(v, v,w)Ti(z, z, y)+

∑
Ri(v,w, v)Ti(z, y, z)+

∑
Ri(w, v, v)Ti(y, z, z)

=

∑
Ri(v, v,w)Ti(z, z, y)+ 2

∑
Ri(v,w, v)Ti(z, y, z)

=

∑
Ri(v, v,w)Ti(z, z, y)+ 2

∑(
−
1
2
Ri(v, v,w)

(
−
1
2
Ti(z, z, y)

))
=
3
2

∑
Ri(v, v,w)Ti(z, z, y).

The first equality holds because of the six permutations in S3, only three yield different elements, the second because
Ri ∈ S2A⊗ A and Ti ∈ S2B⊗ B, and the third by (3).
First we show that S1(Y )⊗ KS(B) ⊂ I3(σ (Seg(Y × Z))). Write Ri =

∑
α Ri,α ⊗ `

α with Ri,α ∈ I2(Y ), so

P(v ⊗ z, v ⊗ z, w ⊗ y) = 3
∑
Ri,αi(v, v)`

αi(w)Ti(z, z, y)

which is zero because Ri,α ∈ I2(Y ) for all i, α. Similarly πS(KS(A)⊗ S1(Z)) ⊂ I3(σ (Seg(Y × Z))).
Now say P = πS(

∑
Ri ⊗ Ti) ∈ πS(KS(A) ⊗ KS(B)) ∩ I3(σ (Seg(Y × Z))). Without loss of generality we assume that the

Ri are linearly independent modulo S1(Y ) and the Ti are linearly independent modulo S1(Z). Fix y, z ∈ Ẑ to obtain a linear
equation∑

i

Ri(v, v,w)ci,y,z = 0 (4)

where ci,y,z = Ti(y, y, z) and if y, z are chosen generically all the coefficients are nonzero becausewe areworkingmod S1(Z).
Note that the index range for i is at most from 1 to min{dim KS(A), dim KS(B)}. We will show each Ri(v, v,w)must be zero
for all v,w ∈ Ŷ . Once having done so, since Ŷ spans A and the expression is linear inw, Ri(v, v,w)must be zero for all v ∈ Ŷ
andw ∈ A, but this in turn implies that each Ri ∈ S1(Y ).
To obtain the desired vanishing, fix v,w and consider the Ri(v, v,w) = ri as constants. We have an equation∑

i

riTi(y, y, z) = 0 ∀y, z ∈ Ẑ

As remarked above, since Z is linearly non-degenerate,wemay choose dim B elements zs ∈ Ẑ that give a basis of B∗. Similarly,
we may choose

(
dim B+1
2

)
− dim I2(Z) elements yt ∈ Ẑ such that the vectors y2t span I2(Z)

⊥
⊂ S2B∗. Thus the vectors y2t ⊗ zs

give a basis of I2(Z)⊥⊗ B∗. Thus the pairing with elements of KS(B)/S1(Z) is perfect, which implies that the matrix given by
pairing the y2t ⊗ zs with the Ti has a one-sided inverse, so we have enough independent equations to force all the ri to vanish.
The argument for the S3A⊗ S3B factor is similar, but easier, as there is no need to symmetrize. Write P =

∑
Ri⊗ Ti with

Ri ∈ S3A and Ti ∈ S3B.

P(v ⊗ z, v ⊗ z, w ⊗ y) =
∑
Ri(v, v,w)Ti(z, z, y).

Now Ri ∈ I3(σ (Y )) iff Ri(v, v,w) = 0 for all v,w ∈ Ŷ and one concludes as above. �

Proof of Theorem 1.4. We first observe that without loss of generality, we may assume dim A = 2. This is because,
continuing the notation of Section 4, σ(Seg(PA∗× Y )) ⊂ σ(Seg(PA∗×PW ∗)) and the ideal of the latter already contains all
partitions of length greater than two and is generated byΛ3A⊗Λ3W . Thus the onlymodules of generators ofσ(Seg(PA∗×Y ))
that occur when dim A > 2 not already accounted for are the components ofΛ3A⊗Λ3W .
The modules I2(σ (Y )) are all trivial modules except for V Anω6 for n ≥ 6 (andΛ

2B⊗Λ2C for Y = Seg(PB∗ × PC∗)).
The case of a triple Segre product was treated in [5]. We now show that there are no new generators in degrees greater

than three in the remaining cases of Y = G(2, B) and Y = OP2. We give two proofs of the G(2, B) case, the first one gives
more information, the second one is uniform with the case Y = OP2.
First proof of G(2, B) case. We need to prove exactness of the middle step of

(S11A⊗ S11(Λ2B))⊗ Sr−2(A⊗Λ2B) ||π |≤4 → (A⊗Λ2B)⊗ Sr−1(A⊗Λ2B) ||π |≤4 → Sr(A⊗Λ2B) ||π |≤4 .
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Here by ||π |≤4, we mean the components of Sa,b(Λ2B) that occur in the decomposition of Sp(A ⊗ Λ2B) = ⊕a+b=p Sa,bA ⊗
Sa,b(S1,1B) that as partitions SπB have length at most four.
Since the partitions SπB occurring in the middle entry can have length at most six, it is sufficient to solve the problem

for the case n ≤ 6. The decomposition of Sa,b(Λ2B) is not known in closed form, however at this point we could rely on a
computer to compute Hd−1(PA∗ × G(4, 6),Λdξ). We instead use an induction argument that is computer free.
Let B have dimension n and consider the rank variety

Rn−1(A∗ ⊗Λ2B∗) := {T ∈ A∗ ⊗Λ2B∗ | ∃U, dimU = n− 1, T ∈ A∗ ⊗Λ2U}.

The secant variety σ̂ (PA∗×G(2, B∗)) coincides with R4(A∗⊗Λ2B∗). We determine the ideal of Rn via that of Rn−1 which will
render the bundles ξ that we use irreducible.
OverB := A∗⊗G(n−1, B∗) consider the bundle with fiber A∗⊗Λ2S. It provides a desingularization of Rn−1(A∗⊗Λ2B∗).

Our corresponding bundles are η = A⊗Λ2S∗ and ξ = A⊗ (Λ2B/Λ2S) = A⊗ S∗ ⊗Q∗. Note that rank ξ = 2(n− 1).
We have the decomposition into irreducible homogeneous bundles:

Λdξ =
⊕

{π=(a,b)|2a+b=d,a+b≤n−1}

SπA⊗ Sπ ′Q∗ ⊗ SdS∗

where π ′ denotes the conjugate partition to π , so if π = (a, b), then π ′ = (2a, 1b).
We apply the Bott algorithm (see e.g. [11], Section 4.1.5) to the weightµ = ωa+ωa+b− (2a+b)ωn−1. The only potential

places to have nonzero cohomology are at the steps (n− 1)− (a+ b), (n− 1)− a and n− 1.
To obtain nonzeroH(n−1)−(a+b)(B,Λn−(a+b)ξ),−(2a+b)+(n−1−(a+b))must be non-positive and−(2a+b)+(n−1−

(a+b))+2must be non-negative, implying 3a+2b = n−1.Write i = 2a+b, soH i(B,Λi+1ξ) = Sn−i,2i−nA⊗S22i−n,12n−2iB.
To obtain nonzeroH(n−1)−a(B,Λn−aξ),−(2a+b)+(n−1−a)+2, must be non-positive and−(2a+b)+(n−1−a)+2

must be non-negative, implying 3a+ b = n+ 1, contradicting a+ b ≤ n− 1.
To obtain nonzero Hn−1(B,Λnξ), −(2a + b) + (n − 1) + 1 would have to be negative and −(2a + b) + (n − 1) + 2

would have to be non-negative, implying 2a+ b = n+ 2 contradicting a+ b ≤ n− 1.
In summary:

Proposition 7.1. Let B, A be vector spaces respectively of dimensions n, 2 and consider the rank variety

Rn−1(A∗ ⊗Λ2B∗) := {T ∈ A∗ ⊗Λ2B∗ | ∃U, dimU = n− 1, T ∈ A∗ ⊗Λ2U}.

Then the ideal of Rn−1 is generated in degrees d n2e ≤ d ≤ b
2n
3 c by the modules

Sn−d,2d−nA⊗ S22d−n,12n−2dB ⊂ S
d(A⊗Λ2B).

To prove Theorem 1.4, by the discussion above we need to examine the cases n = 5, 6. When n = 5 we only have d = 3
and the module S2,1A ⊗ S2,14B generates the ideal of R4(A

∗
⊗ Λ2B∗) and thus of σ(PA∗ × G(2, 5)). When n = 6 we have

d = 3, 4 and the modules S3A⊗ S16B in degree 3 and S2,2A⊗ S22,14B in degree 4 generate the ideal of R5(A
∗
⊗Λ2B∗), and the

ideal of σ(Seg(PA×G(2, 6))) is generated by these and the representation S2,1A⊗ S2,14B that already occurs for dim A = 5.
However, S2,2A⊗ S22,14B is in the ideal generated by S2,1A⊗ S2,14B. �

Proof of cases Y = G(2, K 6) and Y = OP2. Write B = G/Pi0 . Following the conventions of [10], i0 = 4, 6 respectively. We
write the Levi factor of p as g0 = f+ 〈Zi0〉, where f is semi-simple (respectively a3 + a1 and d5) and 〈Zi0〉 is the center of g0.
We will obtain the result by computing H i(B,Λi+1ξ) via H i(B,Λi+1gr(ξ)) and applying a result of Ottaviani and Rubei.
Here

gr(ξ) = A⊗ (S∗ ⊗Q∗ ⊕Λ2Q ∗) = A⊗ (Eω1−ω4+ω5 ⊕ E−ω4) for Y = G(2, 6)

= A⊗ (Eω2−ω6 ⊕ E−ω6) for Y = OP2

where Eλ denotes the irreducible bundle corresponding to the g0-module of highest weight λ.
We first compute the decomposition of the exterior powers of the g0-module giving rise to gr(ξ) as an f-module and then

compute the action of Zi0 to determine the coefficient on ωi0 for each irreducible f-module appearing.
The f-module decomposition is straightforward with the aid of LiE [15], keeping in mind that dim A = 2:

Λk(A⊗ (U ⊕ K)) = ⊕a+b=kSa,bA⊗ S2a,1b(U ⊕ K) (5)

= ⊕a+b=kSa,bA⊗ (S2a,1bU ⊕ S2a,1b−1U ⊕ S2a−1,1b+1U ⊕ S2a−1,1bU). (6)

One then uses LiE to decompose these GL(U)-modules as f-modules. Next to determine the weight on the marked
node (i.e., the coefficient of ωi0 ), one uses the grading element Zi0 ∈ t which has the property that Zi0(αj) = δi0,j. Thus
if λ =

∑
i6=i0

λiωi is an irreducible f-module appearing in W⊗kµ , where the ωi are fundamental weights of g, to find the
coefficient of ωi0 of the g0-module, one calculates∑

λj(c−1)i0,j = kZi0(µ)

where (c−1) denotes the inverse of the Cartan matrix. In both our cases Zi0(µ) = −
1
3 .
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Now one calculates H j(B,Λpgr(ξ)). In practice we first calculated Hp−1(B,Λpgr(ξ)), and only if this was nonzero did
we calculate the other H j(B,Λpgr(ξ)).
We got no relevant cohomology except in degrees one and two. In both cases the only modules that appeared in degree

two were the cubic generators of the ideal plus S21A ⊗ C, which is cancelled by its appearance in H1, and it is the unique
module appearing in H1. By Proposition 6.7 in [16] cancellation occurs in the spectral sequence for the cohomology ofΛ3ξ .
The program we used for this calculation is publicly available at www.math.tamu.edu/~robles. �

Proof of case Y = S5. We need to calculate H i(Λi−1ξ) with ξ = C2 ⊗ E where E is the vector bundle determined by the
P-module with highest weight λ = [−1, 0, 0, 1, 0]. This calculation is similar to the above, but significantly easier because
ξ is irreducible. �
The proof of Theorem 1.4 is now complete. �

8. The coordinate ring of σ(X)

The following proposition is due to F. Zak ([13], p. 51):

Proposition 8.1. Let X = G/P ⊂ PV be a homogeneously embedded homogeneous variety. Let λ denote the highest weight and
µ denote the lowest weight of V , and let vλ, vµ be corresponding weight vectors. Then σ(X) = G.[vλ + vµ], where the closure
is the Zariski closure.

Proof.

g.(vλ + vµ) = (g+ + g0 + g−).(vλ + vµ) = g+.vλ + g−.vµ = T̂[vλ+vµ]σ(G/P)

where the last equality is Terracini’s lemma. This proves the result in the case g+.vλ ∩ g−.vµ = 0, i.e. the secant variety is
non-degenerate, and the result is easy to verify in the degenerate cases as well. (The degenerate cases are all rank at most 2
CHSS and the adjoint varieties G/Pα̃ ⊂ Pgwhere α̃ is the largest root.) �

We work with the affine variety σ̂ (X) ⊂ V . We recall the following standard fact:

Proposition 8.2. Let G be an algebraic group and H a closed subgroup. Then we have the following equality of G-modules:

K [G/H] = ⊕λ∈Λ+G Vλ ⊗ V
∗H
λ .

For a proof see, e.g., [17], Theorem 3, Chapter II, Section 3.
Recall that if G/H ⊂ PV , then K [G/H] maps into K [G/H] by restriction of functions, and K [G/H] is equipped with a

grading (that depends on the embedding). We do not know of any way to recover the grading from this description in
general, in fact the same Vλ may appear in several different degrees. Fortunately, when G = GLn, the degree is recoverable.

Example 2. X = G(k,W ), with k > 2. Here without loss of generality wemay take dimW ≥ 2k. Indeed, if dimW < 2k, we
may pass to the dual Grassmannian G(dimW − k,W ∗). If dim(W ) > 2k, σ̂ (G(k,W )) is contained in the subspace variety
R2k(ΛkW ) of tensors that can be written using ≤2k basis vectors. LetW ′ ⊂ W be a 2k dimensional subspace. Consider the
subgroup H ′ ⊂ H ,

H ′ = {φ ∈ SL(W )|φ|W ′ = IdW ′}.

The quotient SL(W )/H ′ can be identified with the variety Hominj(W ′,W ) of injective linear maps from W ′ to W . Since
the complement of Hominj(W ′,W ) in Hom(W ′,W ) has codimension≥ 2 every regular function on Hominj(W ′,W ) extends
to Hom(W ′,W ). This means that we have the equalities

K [R2k(ΛkW )] = K [SL(W )/H ′] = ⊕λ∈Λ+SL(W )(SλW )
∗
⊗ SλWH

′

= ⊕λ(SλW )⊕dim SλW
′

.

Here in the last equality we may view λ as a partition.
This reduces the calculation of (SλW )H to the caseW = W ′. Assuming now that dim(W ) = 2k, with basis e1, . . . , e2k,

we may take vλ + vµ = e1 ∧ · · · ∧ ek + ek+1 ∧ · · · ∧ e2k. Then

H =
{(
A 0
0 B

)
| det(A) = det(B) = 1

}
.

Considering G(k,W ) = SL(W )/Pk, it is clear that no fundamental representation other thanWωk = Λ
kW has an H-fixed

vector and inWωk there is a 2-dimensional subspace of such spanned by e1∧· · ·∧ ek and ek+1∧· · ·∧ e2k. The corresponding
two copies ofΛkW generate the ring of invariants in the following sense. We claim:

K [SL(W )/H] = ⊕r,s≥0 S(rk)W ⊗ S(sk)W .

http://arxiv.org/www.math.tamu.edu/~robles
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Two generating fundamental representations are in bidegrees (1, 0) and (0, 1). If we work instead with GL(W ), since H acts
trivially on the determinant, we get

K [GL(W )/H] = ⊕r,s≥0,m∈Z S(rk)W ⊗ S(sk)W ⊗ (Λ
dimWW )m.

This second description has the advantage that when we consider the embedded space G/H ⊂ PΛkW we can determine
the degree these modules could appear in K [GL(W )/H] = K [σ(G(k,W ))].
To see this, write E = 〈e1, . . . , ek〉, F = 〈ek+1, . . . , e2k〉, we want to see howmany instances of the trivial representation

of SL(E)× SL(F) occur in the irreducible SL(W )module SλW . Now, sinceW = E ⊕ F

Sλ(W ) = ⊕µ SµE ⊗ Sλ/µF = ⊕µ,ν cλµ,νSµE ⊗ SνF

we have

dim (SλW ∗)H =
∑
r,s≥0

cλ
(rk),(sk).

This gives

K [SL(W )/H] = ⊕r,s≥0 S(rk)W ⊗ S(sk)W .

This means that this ring is the homomorphic image of the symmetric algebra on two copies of ΛkW corresponding to
components in bidegrees (1, 0) and (0, 1)which is our claim.

Example 3. X = Seg(PA1⊗· · ·⊗PAk) = ΠGL(Ai)/P , dim Ai = 2. Here wemay take vλ+ vµ = e1⊗· · ·⊗ ek+ f1⊗· · ·⊗ fk
with ej, fj a basis of Aj. Then

H =
{
Πj

(
sj 0
0 tj

)
| s1 · · · sk = t1 · · · tk = 1

}
.

Now consider the action of H on

Sa1,b1A1 ⊗ · · · ⊗ Sak,bkAk = (detA1)
b1Sa1−b1A1 ⊗ · · · ⊗ (detAk)bkSak−bkAk.

The weight vectors are

ei1+b11 f a1−i11 ⊗ · · · ⊗ eikk f
ak−ik
k , 0 ≤ ij ≤ aj − bj

which is acted on by H by

(si1+b11 · · · sik+bkk )(ta1−b1−i11 · · · tak−bk−ikk )

so in order to be H-invariant, the exponents must satisfy i1+ b1 = i2+ b2 = · · · = ik+ bk and a1− b1− i1 = a2− b2− i2 =
· · · = ak − bk − ik. This means that the vectors e

ij+bj
j f

aj−ij
j have to be all of the same weight, for j = 1, . . . , k.

Thus means the dimension of the subspace of H-invariant vectors in the module

Sa1,b1A1 ⊗ · · · ⊗ Sak,bkAk,

is minj aj −maxj bj + 1.
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