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The aim of this note is to give a representation-theoretic justification of 
some well-known identities in the theory of symmetric functions. Our main 
idea is to use basic properties of Koszul complexes. 

To begin with let us consider a vector space U over a field K of charac- 
teristic zero and the symmetric algebra S.(u) on U. It is well known that the 
Koszul complex corresponding to the canonical inclusion U 4 S.(U) gives 
rise to a free resolution of the residue field K over S.(u), i.e., we have an 
exact sequence 

***-A”(u)@ S.(U)+ -..+U@S.(U)-+S.(U)+K-,O. 

By taking the trace of the obvious action of C E GI(U) on both S.(U) and 
A*(U) we get 

where si is the ith complete homogeneous symmetric function in the eigen- 
values of C and 1’ is the jth elementary symmetric function. By taking U of 
arbitrarily high rank we get the Newton identities 

for symmetric functions in infinitely many indeterminates x = (xi, x2,...). 
The same idea applies to other representations of Gl(U) and gives 

representation-theoretic interpretation of the following classical formulas. As 
above all symmetric functions involved depend on infinitely many indeter- 
minates. 

Replacing U by /i ‘(U) we have 

( I( 1 s, 
I 

T (-1yq = 1 (2) 
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where 111 is the weight of the partition Z, f is its conjugate partition and Z 
ranges over all partitions such that I’ has even parts; .Z ranges over all 
partitions of the form (pi ,...,p,] pi + l,...,p, + 1) in Frobenius notation and 
s1 is the Schur function corresponding to the partition 1. The left-hand factor 
in (2) is the trace of the action of GZ(iY) on S.@‘(U)) and the right-hand one 
is the alternating sum corresponding to the trace of 11*(.4’(U)) (see 
Littlewood [3]). Therefore the formula (2) implies another identity 

n (1 - XiXj) = c (-1)‘““’ s, 
id J 

where f ranges over the same set of partitions as in (2). Similarly replacing 
U by S,(U) we have 

( I( c s, c (-l)‘J”2 SJ = 1 
I J 1 

where Z ranges over all partitions with even parts and J ranges over all 
partitions (p, + l,..., Pr t 11 p1 ,...,p,). Consequently 

n (1 - xf) n (1 - XiXj) = c (-1)‘J”2 SJ 
I i<i .I 

where J ranges over the same set of partitions as in (3). The above identities 
are due to Littlewood [3, p. 2381, see also Macdonald 14, p. 461 for another 
proof using Weyl’s identity for root-systems of classical groups. 

Note that both (2) and (3) split into a family of identities similar to (1) 
because the Koszul complex splits into a sum of homogeneous components, 
e.g., the formula (2) gives rise to identities indexed by natural numbers 

where Z and J range as in (2). 
In the same way we can interpret the Koszul complex of the canonical 

inclusion E @ F 4 S.(E @ F) over the symmetric algebra S.(E 0 F) where 
E, F are vector spaces. In this case we have by the Cauchy formula 

JJ (l -xiYj)-l =C sI(x) sl(Y) 

i.i I 

summed over all partitions I. Therefore the inverse is 

n (1 - X,Yj) = c (-lYJ SAXI Q(Y) 
id 3 

where the summation ranges over all partitions J. 
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This note was inspired by a question raised by R. Stanley about a 
representation-theoretic interpretation of another Littlewood formula 

v (1 -xi) n (1 -xixj)=c (-l)““+“‘“‘zs, 
i<j I 

(4) 

where the summation ranges over all self-conjugate partitions I and r(l) is 
the rank of 1, i.e., the length of the main diagonal of its diagram. 

The inverse of the product in (4) can be expressed (see [3, p. 2381 and a 
note in [4, p. 541) in the form 

n (l -Xi)-’ n (1 -XiXj)-’ =C S, 
I icj I 

summed over all partitions I. Observe that this product is the trace of the 
action of G1(U) on the algebra S.(U+A*(u)). By taking the Koszul 
complex associated to the canonical inclusion U + A ‘(U) 4 S.(U + A*(U)) 
over S.( U + A ‘(v)) we get the formula 

( I(. 
7 s, ; (-l)k+ IJW i”SJ) = 1 

where the summation ranges over all non-negative integers k and all 
partitions J from a set A. The set A consists of all partitions of the form 
(P*,...,PrIP1 + L...,P, + 11, Pl > P2 > . .. > pr > 0, and the zero partition 0; 
note that s, = 1. Hence 

n (1 -xi) n (1 - XiXj) = 2 (-l)k+‘J”Q$ 
I i<j k,J 

with k, J as above. We shall prove that the right-hand side of this formula is 
in fact the right-hand side of (4). 

When dealing with partitions we use the same conventions and 
terminology as in [2]. In particular, partitions are weakly decreasing 
sequences of non-negative integers and the diagram of a partition 
I = (i, , i2,...; i,) starts with the bottom row of length i, and goes upward. 
For example, 

X 

xx 
(6) 

xx 

xxx 

is the diagram of the partition (3,2,2, 1). 
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Using the Pieri formula we can express the right-hand side of (5) as an 
alternating sum of Schur functions. We prove that 

(i) each Schur function corresponding to a self-conjugate partition can 
be obtained in one way only from products of type AksJ, J E A, and 

(ii) other summands of lksJ, .ZE A, can be grouped in pairs in such a 
way that they cancel in the right-hand side of (5). 

LEMMA. The Schur jiinctzon s(,,~, is a summand of some )iksJ, J E A, in 
the following cases only: 

(0) b = a > 0, a summand ofI~~,_~,~), 

(1) b = a +p,p > 1, a > 0, a summand ofIPP’sC,,b-p+,), 

(1*) b=a+p,p> l,a>O, a summand o~~~+‘s~~-~,~-~~, 

(2) b=p>2,a=0,asummandof~P-2s~0,,~r 

(2*) b=p>2,a=0,asummandofAPs,. 

A proof of the lemma follows immediately from the Pieri formula and the 
definition of A. 

If Z is a hook we say that a summand s1 of AksJ, JE A, is of type 0, 1, l*, 
2, 2*, respectively, depending on a case listed in the lemma. Now the lemma 
implies that the only Schur functions indexed by hooks that do appear in the 
right-hand side of (5) are of type 0 (self-conjugate) and that summands 
indexed by the same hooks of type 1, l*, and 2, 2*, respectively, cancel in 

(5). 
In order to pass from hooks to arbitrary partitions we define a type of the 

summand s, of IZksJ, J E A, for any I. By the Pieri formula the diagram of Z 
is obtained from that of J by adding k squares in such a way that there is at 
most one added in each row. If we view Z as a sequence of its hooks we are 
adding squares in this process to consecutive hooks thus determining types 
of these hooks according to the list in the lemma. We define the type of s, in 
JksJ, JE A, to be the sequence of types of its hooks. 

For example, sC4,3,0,6,3,2) is a summand of 1ssC,,2,,,4,3.,, and is obtained as 
illustrated in the following diagram: 

q 

Its type is [ 1 *, 0,2]. 

x x 0 

x x x 

x x x 
x x x x q 

x x x x 0 

(7) 
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Suppose that s, is a summand of IZksJ, .Z E A, of type [p, ,..., p,], pi = 0, 1, 
1 *, 2, 2 *. We adopt the convention 1 * * = 1, 2 * * = 2. Let us consider the 
case when at least one pi is different from zero and let t be the smallest index 
such that pt # 0. We claim that there exists a summand sI of Ak’sJ,, J’ E A, 
of type b 1 >**., Pt- 19 P:, Pt+ 1 Y-*+9 p,]. Indeed, it is enough to replace the 
procedure pt by p: in the tth hook of s, in Aks,. A simple inspection shows 
that it is always possible. The above correspondence defines an involutive 
endomorphism on the set of all summands of ,IksJ, .Z E A, of type different 
from (0, O,..., 0). Since the signs by corresponding summands are opposite 
these summands cancel in the sum (5). 

For example, to the summand (7) of type [ l*, 0,2] appearing in (5) with 
the sign “minus” there corresponds the summand of type [ 1, 0, 21 determined 
by the diagram 

0 

X 

xx0 

x x x 

x x x 

x x x x 0 

x x x x x 

and appearing with the sign “plus” in (5). 
Summands of type (O,..., 0) in (5) are indexed by self-conjugate partitions 

and each appears only once as a summand of some lksJ, .Z E A. More 
precisely, if Z = (ir ,..., &Ii, ,..., i,) and i, f 0 then s, is a summand of 
I’s (LI-l . . . . . i,-Iii ,,..., i,> and I s si n ‘t g  in (5) is determined by r + C i, = 
r(Z) + (IZ( - r(Z))/2 = (r(Z) + (Z()/2. If Z = (i, ,..., i,- I, 0 ( i, ,..., i,- 1, 0) then s, 
is a summad Of A’+I,..., i,-,-lli ,,... *i,-,) and appears in (5) with the same 
sign. 

Observe that unlike in the previous formulas the right-hand side of (4) 
cannot be interpreted as an alternating sum of traces corresponding to some 
exact ‘complex over S.(U + /i’(U)). Although we start with the Koszul 
complex some summands cancel on the function level but this cannot be 
done on the level of representations as is easy to prove by simple 
combinatorial arguments. 

Finally, we would like to prove by similar methods one more formula 
which seems to be new. We claim that 

n (1 + xi)-’ rJ (1 + xixj)-’ = c (-l)(“‘+P(‘%, 
i i<j IEB 

(8) 



6 J6ZEFIAK AND WEYMAN 

where p(l) is the number of odd parts of I and B is the set of all partitions I 
satisfying 

ik-ik+,f 0 or 1 (mod 4) 

i,- ik+l f 1 or 2 (mod 4) 

We set i, = 0 for s > length I. 

for i, even, 

for i, odd. 

Our starting point is an observation that ni (1 + xi) niGj (1 + xixj) is 
the trace associated with the exterior algebra n’(U t S,(U)). We are going to 
construct a free resolution of K over n*(U + S,(u)) to compute its inverse. 
This is a construction that is very similar to that of the Koszul complex. 
This time, however, our basic ring is not commutative but skew- 
commutative. For any vector space W over a field K of characteristic zero 
we have an infinite complex of free A*(W)-modules 

which is a minimal free A’(W)-resolution of K. The differential d, is defined 
by the formula 

dp(w, .a. )@a)= i w, **a lGi . . . w,@wp 
i= 1 

for wi E W, a E A’(W) where the sign - means that the corresponding 
element is to be omitted. One can easily check that the complex is indeed 
acyclic. We send the reader to [ 1, p. 2261 for a proof in the context of Tate 
resolutions of commutative graded algebras. 

Taking W = U + S,(U) and passing to traces we obtain 

v C1 + xi>-’ Qj (l t XiXj)-’ =C (-l)k+‘J’iZSkSJ 
k.J 

where J ranges over all partitions appearing in the decomposition of 
S.(S,(u)), i.e., once again by one of Littlewood formulas J ranges over all 
partitions with even parts. 

We prove that the right-hand sides of (8) and (9) are equal. To this end 
we compute products of the type sksJ where J has even parts. By the Pieri 
formula such a product is a sum of Schur functions indexed by partitions 
obtained from J by adding k squares in such a way that there is at most one 
added in each column. Let us start with a one-row partition. If the length of 
the row is of the form 4m or 4m t 1 then the corresponding Schur function 
appears as a summand in products sks, exactly 2m + 1 times, e.g., the Schur 
function s5 is a summand of s, s, , s3 s2 and s, s,. All these summands but one 
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cancel in the right-hand side of (9). The corresponding Schur function 
appears in (9) with coefficient r 1. If the length of the row of a one-row 
partition is of the form 4m t 2 or 4m t 3, then the corresponding Schur 
function appears as a summand in products sksJ exactly 2m t 2 times. In 
this case all the summands cancel in the right-hand side of (9). 

A simple combinatorial analysis similar to the one explained for one-row 
partitions shows that the Schur function s, appears in the right-hand side of 
(9) an odd number of times if and only if I E B. All the other Schur 
functions either appear an even number of times and cancel in (9) or do not 
appear at all. 

Let us illustrate this on an example of a two-row partition I = (9, 4). We 
must count in how many ways we can remove squares from the diagram of I 
in such a way that at most one in each column is removed and the resulting 
diagram has even rows. Here are all possibilities. 

-I 

x x x x 

xxxxxxxxu 

‘0000 

I 

xxxxxxxxo 

x x q n - 

I 

xxxxxxouu 

x x x x 

xxxxcluuuu 
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All together we have 9 possibilities which can be grouped according to the 
number of squares that are removed. These groups appear in the right-hand 
side of (9) with the indicated signs and all the summands but the first cancel. 
Notice that the number 9 is obtained here as a product corresponding to 3 
possibilities of removing squares from the first row and 3 possibilities of 
removing squares from the second one in such a way that there are no 
overlaps in columns (and this depends only on the difference i, - iz.) For 
general ZE B the number of times s, appears in (9) is odd and is a product 
(indexed by rows) of numbers expressing all possibilities of removing squares 
from the part of the mth row that does not overlap with the (m + 1)th row 
(so depending on i, - i,, 1 squares), for all m. 

If Z E B then s, is a summand of sPsJ where p =p(l) is the number of odd 
parts of Z and .Z is obtained from Z by removing one square from each row of 
Z of odd length. This is always possible since for ZE B i, # i,, 1 if i, is odd. 
Only summands of this type stay in (9) after cancellation of other terms. 
Therefore the sign by s, is equal to p(Z) + (IZI -p(Z))/2 = (III + p(Z))/2. 
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