11 research outputs found

    Atomic excitation and molecular dissociation by low energy electron collisions

    Get PDF
    In this work, momentum imaging experiments have been conducted for the electron impact excitation of metastable states in noble gases and for dissociative electron attachment (DEA) in polyatomic molecules. For the electron impact excitation study a new experimental technique has been developed which is able to measure the scattering angle distribution of the electrons by detection of the momentum transfer to the atoms. Momentum transfer images have been recorded for helium and neon at fixed electron impact energy close to the excitation threshold and good agreement with current R-matrix theory calculations was found. A new momentum imaging apparatus for negative ions has been built for the purpose of studying DEA in biologically relevant molecules. During this work, DEA was investigated in the molecules ammonia, water, formic acid, furan, pyridine and in two chlorofluorocarbons. Furthermore, the change of DEA resonance energies when molecules form clusters compared to monomers was investigated in ammonia and formic acid. The experimental results of most studied molecules could be compared to recent theoretical calculations and they support further development in the theoretical description of DEA. The new apparatus built in this work also delivered a superior momentum resolution compared to existing setups. This allows the momentum imaging of heavier fragments and fragments with lower kinetic energy

    Parameters Influencing Lane Flow Distribution on Multilane Freeways in PTV Vissim

    Get PDF
    In a parameter study, we systematically varied parameter values, and quantified the resulting traffic flow in each individual lane. We modeled two-, three-, and four-lane freeway sections with the microscopic traffic flow simulation tool PTV Vissim. We compared the results with findings from literature. Simulations using car following model Wiedemann 99 fit better to empirical studies than those using Wiedemann 74. Empirically determinable parameters, that have a relevant influence on lane flow distribution are desired speed distributions (mean for heavy-duty vehicles and standard deviation for cars), heavy-duty vehicle share, and the gradient of the section. Additionally, the driving behavior parameters CC1 (headway time), CC3 (threshold for entering following), and safety distance reduction factor have an influence. As CC1 is one of the most relevant parameters for calibrating capacity, CC3 and the safety distance reduction factor remain for lane flow adjustment

    Kinematically Complete Study of Low-Energy Electron-Impact Ionization of Argon: Internormalized Cross Sections in Three-Dimensional Kinematics

    Get PDF
    As a further test of advanced theoretical methods to describe electron-impact single-ionization processes in complex atomic targets, we extended our recent work on Ne(2p) ionization [X. Ren, S. Amami, O. Zatsarinny, T. Pflüger, M. Weyland, W. Y. Baek, H. Rabus, K. Bartschat, D. Madison, and A. Dorn, Phys. Rev. A 91, 032707 (2015)PLRAAN1050-294710.1103/PhysRevA.91.032707] to Ar(3p) ionization at the relatively low incident energy of E0 = 66 eV. The experimental data were obtained with a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission. We present experimental data for detection angles of 10, 15, and 20⁰ for the faster of the two outgoing electrons as a function of the detection angle of the secondary electron with energies of 3, 5, and 10 eV, respectively. Comparison with theoretical predictions from a B-spline R-matrix (BSR) with pseudostates approach and a three-body distorted-wave (3DW) approach, for detection of the secondary electron in three orthogonal planes as well as the entire solid angle, shows overall satisfactory agreement between experiment and the BSR results, whereas the 3DW approach faces difficulties in predicting some of the details of the angular distributions. These findings are different from our earlier work on Ne(2p), where both the BSR and 3DW approaches yielded comparable levels of agreement with the experimental data

    Kinematically Complete Study of Low-Energy Electron-Impact Ionization of Neon: Internormalized Cross Sections in Three-Dimensional Kinematics

    Get PDF
    Low-energy (E0 0=65eV) electron-impact single ionization of Ne (2p) has been investigated to thoroughly test state-of-the-art theoretical approaches. The experimental data were measured using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission energies ranging from 2 to 8 eV, and projectile scattering angles ranging from 8.5⁰ to 20.0⁰. The experimental triple-differential cross sections are internormalized across all measured scattering angles and ejected energies. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach, the distorted-wave Born approximation with the inclusion of postcollision interaction (PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between the experiment and predictions from the 3DW and BSR models, for both the angular dependence and the relative magnitude of the cross sections in the full three-dimensional parameter space. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process

    Low-energy (E₀ = 65 eV) Electron-Impact Ionization of Neon: Internormalized Triple-Differentical Cross Sections in 3D Kinematics

    Get PDF
    We present a combined experimental and theoretical study on the low-energy (E0 = 65 eV) electron- impact ionization of neon. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach (DWB2-RM), the distorted-wave Born approximation with inclusion of post-collision interaction (DWBA-PCI), a three-body distorted-wave approach (3DW), and a B-spline R-matrix (BSR) with pseudostates approach. Excellent agreement is found between experiment and the 3DW and BSR theories. The importance of PCI effects is clearly visible in this low-energy electron-impact ionization process
    corecore