709 research outputs found

    Comparison of reacting and non-reacting shear layers at a high subsonic Mach number

    Get PDF
    The flow field in a hydrogen-fueled planar reacting shear layer was measured with an LDV system and is compared with a similar air to air case without combustion. Measurements were made with a speed ratio of 0.34 with the highspeed stream at Mach 0.71. They show that the shear layer with reaction grows faster than one without, and both cases are within the range of data scatter presented by the established database. The coupling between the streamwise and the cross-stream turbulence components inside the shear layer is slow, and reaction only increased it slightly. However, a more organized pattern of the Reynolds stress is present in the reacting shear layer, possibly as a result of larger scale structure formation in the layer associated with heat release

    Turbulence measurement in a reacting and non-reacting shear layer at a high subsonic Mach number

    Get PDF
    The results of two component velocity and turbulence measurements are presented which were obtained on a planar reacting shear layer burning hydrogen. Quantitative LDV and temperature measurements are presented with and without chemical reaction within the shear layer at a velocity ratio of 0.34 and a high speed Mach number of 0.7. The comparison showed that the reacting shear layer grew faster than that without reaction. Using a reduced width coordinate, the reacting and non-reacting profiles were very similar. The peak turbulence for both cases was 20 percent

    Nemo Omnibus Placet: Exzessive Regulierung und staatliche Willkür

    Full text link
    This paper develops the hypothesis that the inclusion of multiple objectives into laws widens the discretionary powers of executive institutions. As the decision how to balance trade-offs is removed from the political to the executive sphere, policy making becomes less transparent and also less accountable. While including numerous objectives into law may serve as an acknowledgement to the various interests of a heterogeneous citizenry, the pursuit of conflicting objectives implies that public bureaucracies instead of parliaments are given powers to decide about trade-offs. We conjecture that a bureaucracy that has multiple objectives will be less accountable and, therefore, (i) use its instruments excessively and (ii) favor instruments that are effective in the short run, but may be harmful in the long run. We illustrate our hypotheses, analyzing (a) the increasing number of objectives enshrined in Germany's Energy Industry Law and (b) the conflict between the European Commission and the German Government about potential regulatory holidays for new infrastructure investment in telecommunications markets

    Low NOx, Lean Direct Wall Injection Combustor Concept Developed

    Get PDF
    The low-emissions combustor development at the NASA Glenn Research Center is directed toward advanced high-pressure aircraft gas turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low-power conditions. Low-NOx combustors can be classified into rich burn and lean burn concepts. Lean burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) combustors. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibly of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone and, thus, does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, the key is good atomization and mixing of the fuel quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP

    A Unique, Optically Accessible Flame Tube Facility for Lean Combustor Studies

    Get PDF
    A facility that allows interrogation of combusting flows by advanced diagnostic methods and instrumentation has been developed at the NASA Lewis Research Center. An optically accessible flame tube combustor is described which has high temperature, pressure, and air flow capabilities. The windows in the combustor measure 3.8 cm axially by 5.1 cm radially, providing 67% optical access to the 7.6 cm x 7.6 cm cross section flow chamber. Advanced gas analysis instrumentation is available through a gas chromatography/mass spectrometer system (GC/MS), which has on-line capability for heavy hydrocarbon measurement with resolution to the parts per billion level. The instrumentation allows one to study combusting flows and combustor subcomponents, such as fuel injectors and air swirlers. Planar Laser Induced Fluorescence (PLIF) can measure unstable combustion species, which cannot be obtained with traditional gas sampling. This type of data is especially useful to combustion modellers. The optical access allows measurements to have high spatial and temporal resolution. GC/MS data and PLIF images of OH- are presented from experiments using a lean direct injection (LDI) combustor burning Jet-A fuel at inlet temperatures ranging from 810 K to 866 K, combustor pressures up to 1380 kPa, and equivalence ratios from 0.41 to 0.59

    A new gene expression signature, the ClinicoMolecular Triad Classification, may improve prediction and prognostication of breast cancer at the time of diagnosis

    Get PDF
    Abstract Introduction When making treatment decisions, oncologists often stratify breast cancer (BC) into a low-risk group (low-grade estrogen receptor-positive (ER+)), an intermediate-risk group (high-grade ER+) and a high-risk group that includes Her2+ and triple-negative (TN) tumors (ER-/PR-/Her2-). None of the currently available gene signatures correlates to this clinical classification. In this study, we aimed to develop a test that is practical for oncologists and offers both molecular characterization of BC and improved prediction of prognosis and treatment response. Methods We investigated the molecular basis of such clinical practice by grouping Her2+ and TN BC together during clustering analyses of the genome-wide gene expression profiles of our training cohort, mostly derived from fine-needle aspiration biopsies (FNABs) of 149 consecutive evaluable BC. The analyses consistently divided these tumors into a three-cluster pattern, similarly to clinical risk stratification groups, that was reproducible in published microarray databases (n = 2,487) annotated with clinical outcomes. The clinicopathological parameters of each of these three molecular groups were also similar to clinical classification. Results The low-risk group had good outcomes and benefited from endocrine therapy. Both the intermediate- and high-risk groups had poor outcomes, and their BC was resistant to endocrine therapy. The latter group demonstrated the highest rate of complete pathological response to neoadjuvant chemotherapy; the highest activities in Myc, E2F1, Ras, β-catenin and IFN-γ pathways; and poor prognosis predicted by 14 independent prognostic signatures. On the basis of multivariate analysis, we found that this new gene signature, termed the "ClinicoMolecular Triad Classification" (CMTC), predicted recurrence and treatment response better than all pathological parameters and other prognostic signatures. Conclusions CMTC correlates well with current clinical classifications of BC and has the potential to be easily integrated into routine clinical practice. Using FNABs, CMTC can be determined at the time of diagnostic needle biopsies for tumors of all sizes. On the basis of using public databases as the validation cohort in our analyses, CMTC appeared to enable accurate treatment guidance, could be made available in preoperative settings and was applicable to all BC types independently of tumor size and receptor and nodal status. The unique oncogenic signaling pathway pattern of each CMTC group may provide guidance in the development of new treatment strategies. Further validation of CMTC requires prospective, randomized, controlled trials

    Local orientational order in the Stockmayer liquid

    Full text link
    Phase behaviour of the Stockmayer fluid is studied with a method similar to the Monte-Carlo annealing scheme. We introduce a novel order parameter which is sensitive to the local co-orientation of the dipoles of particles in the fluid. We exhibit a phase diagram based on the behaviour of the order parameter in the density region 0.1 \leq {\rho}\ast \leq 0.32. Specifically, we observe and analyse a second order locally disordered fluid \rightarrow locally oriented fluid phase transition.Comment: 13 pages, 7 figure

    Exploring the limits of ultracold atoms in space

    Get PDF
    Existing space-based cold atom experiments have demonstrated the utility of microgravity for improvements in observation times and for minimizing the expansion energy and rate of a freely evolving coherent matter wave. In this paper we explore the potential for space-based experiments to extend the limits of ultracold atoms utilizing not just microgravity, but also other aspects of the space environment such as exceptionally good vacuums and extremely cold temperatures. The tantalizing possibility that such experiments may one day be able to probe physics of quantum objects with masses approaching the Planck mass is discussed

    Mapping genomic and transcriptomic alterations spatially in epithelial cells adjacent to human breast carcinoma.

    Get PDF
    Almost all genomic studies of breast cancer have focused on well-established tumours because it is technically challenging to study the earliest mutational events occurring in human breast epithelial cells. To address this we created a unique dataset of epithelial samples ductoscopically obtained from ducts leading to breast carcinomas and matched samples from ducts on the opposite side of the nipple. Here, we demonstrate that perturbations in mRNA abundance, with increasing proximity to tumour, cannot be explained by copy number aberrations. Rather, we find a possibility of field cancerization surrounding the primary tumour by constructing a classifier that evaluates where epithelial samples were obtained relative to a tumour (cross-validated micro-averaged AUC = 0.74). We implement a spectral co-clustering algorithm to define biclusters. Relating to over-represented bicluster pathways, we further validate two genes with tissue microarrays and in vitro experiments. We highlight evidence suggesting that bicluster perturbation occurs early in tumour development

    Finite element modelling of forging and other metal forming processes

    No full text
    An erratum to this article can be found at : http://dx.doi.org/10.1007/s12289-010-1000-0International audienceThe fundamental mechanical formulation is recalled for simulation of metal forming processes. The basic principles of 3-dimensional finite element discretization and of time integration are summarized. Several important numerical developments for efficient computation of large plastic deformation are briefly described. Various fields of applications to real processes are reviewed. Illustrative examples are mentioned to show the utilization of the commercial computer code Forge3 in industry, as a very flexible tool to design metal forming sequences
    • …
    corecore