386 research outputs found

    Characteristic patterns of inter- and intra-hemispheric metabolic connectivity in patients with stable and progressive mild cognitive impairment and Alzheimer's disease

    Get PDF
    The change in hypometabolism affects the regional links in the brain network. Here, to understand the underlying brain metabolic network deficits during the early stage and disease evolution of AD (Alzheimer disease), we applied correlation analysis to identify the metabolic connectivity patterns using 18F-FDG PET data for NC (normal control), sMCI (stable MCI), pMCI (progressive MCI) and AD, and explore the inter- and intra-hemispheric connectivity between anatomically-defined brain regions. Regions extracted from 90 anatomical structures were used to construct the matrix for measuring the inter- and intra-hemispheric connectivity. The brain connectivity patterns from the metabolic network show a decreasing trend of inter- and intra-hemispheric connections for NC, sMCI, pMCI and AD. Connection of temporal to the frontal or occipital regions is a characteristic pattern for conversion of NC to MCI, and the density of links in the parietal-occipital network is a differential pattern between sMCI and pMCI. The reduction pattern of inter and intra-hemispheric brain connectivity in the metabolic network depends on the disease stages, and is with a decreasing trend with respect to disease severity. Both frontal-occipital and parietal-occipital connectivity patterns in the metabolic network using 18F-FDG PET are the key feature for differentiating disease groups in AD

    Multi-Region Hemispheric Specialization Differentiates Human from Nonhuman Primate Brain Function

    Get PDF
    The human behavioral repertoire greatly exceeds that of nonhuman primates. Anatomical specializations of the human brain include an enlarged neocortex and prefrontal cortex (Semendeferi et al. in Am J Phys Anthropol 114:224–241, 2001), but regional enlargements alone cannot account for these vast functional differences. Hemispheric specialization has long believed to be a major contributing factor to such distinctive human characteristics as motor dominance, attentional control and language. Yet structural cerebral asymmetries, documented in both humans and some nonhuman primate species, are relatively minor compared to behavioral lateralization. Identifying the mechanisms that underlie these functional differences remains a goal of considerable interest. Here, we investigate the intrinsic connectivity networks in four primate species (humans, chimpanzees, baboons, and capuchin monkeys) using resting-state fMRI to evaluate the intra- and inter- hemispheric coherences of spontaneous BOLD fluctuation. All three nonhuman primate species displayed lateralized functional networks that were strikingly similar to those observed in humans. However, only humans had multi-region lateralized networks, which provide fronto-parietal connectivity. Our results indicate that this pattern of within-hemisphere connectivity distinguishes humans from nonhuman primates

    Discrepancies in Kappa Opioid Agonist Binding Revealed through PET Imaging

    Get PDF
    Kappa opioid receptor (KOR) modulation has been pursued in many conceptual frameworks for the treatment of human pain, depression, and anxiety. As such, several imaging tools have been developed to characterize the density of KORs in the human brain and its occupancy by exogenous drug-like compounds. While exploring the pharmacology of KOR tool compounds using positron emission tomography (PET), we observed discrepancies in the apparent competition binding as measured by changes in binding potential (BP ND , binding potential with respect to non-displaceable uptake). This prompted us to systematically look at the relationships between baseline BP ND maps for three common KOR PET radioligands, the antagonists [ 11 C]LY2795050 and [ 11 C]LY2459989, and the agonist [ 11 C]GR103545. We then measured changes in BP ND using kappa antagonists (naloxone, naltrexone, LY2795050, JDTic, nor-BNI), and found BP ND was affected similarly between [ 11 C]GR103545 and [ 11 C]LY2459989. Longitudinal PET studies with nor-BNI and JDTic were also examined, and we observed a persistent decrease in [ 11 C]GR103545 BP ND up to 25 days after drug administration for both nor-BNI and JDTic. Kappa agonists were also administered, and butorphan and GR89696 (racemic GR103545) impacted binding to comparable levels between the two radiotracers. Of greatest significance, kappa agonists salvinorin A and U-50488 caused dramatic reductions in [ 11 C]GR103545 BP ND but did not change [ 11 C]LY2459989 binding. This discrepancy was further examined in dose-response studies with each radiotracer as well as in vitro binding experiments

    Intense agricultural irrigation induced contrasting precipitation changes in Saudi Arabia

    Get PDF
    Groundwater extraction has grown tremendously in Saudi Arabia to meet the irrigation water demand since the 1980s, and irrigation is one of the major anthropogenic factors modulating regional hydroclimate. However, the link between irrigation and hydroclimate is not well understood in a dry region such as Saudi Arabia. In this study, we utilize three different regional climate models to explore the physical mechanisms behind the irrigation impacts in this region. The results are robust across models and show that when irrigation is applied, wetter soil results in higher evapotranspiration and cools the lower atmosphere, leading to an anomalous pressure field and alters vapor transportation. Precipitation decreases locally because of the local cooling effect, whereas additional water vapor convergence enhances precipitation west to the irrigated region. This west–east contrast of precipitation change indicates a possible link between irrigation expansion in the 1980s and subsequent decadal precipitation variations in central Saudi Arabia. We further find from observations a decadal west–east contrast of precipitation changes in Saudi Arabia to support the similar finding in the models. This study implies the importance of including anthropogenic water management in climate models and provides a better understanding of how irrigation impacts local-to-regional climate

    Atom interferometry tests of local Lorentz invariance in gravity and electrodynamics

    Full text link
    We present atom-interferometer tests of the local Lorentz invariance of post-Newtonian gravity. An experiment probing for anomalous vertical gravity on Earth, which has already been performed by us, uses the highest-resolution atomic gravimeter so far. The influence of Lorentz violation in electrodynamics is also taken into account, resulting in combined bounds on Lorentz violation in gravity and electrodynamics. Expressed within the standard model extension or Nordtvedt's anisotropic universe model, we limit twelve linear combinations of seven coefficients for Lorentz violation at the part per billion level, from which we derive limits on six coefficients (and seven when taking into account additional data from lunar laser ranging). We also discuss the use of horizontal interferometers, including atom-chip or guided-atom devices, which potentially allow the use of longer coherence times in order to achieve higher sensitivity.Comment: Reference added; corrected factor of 2 in Tab. IV and V. 12 pages, 4 figures, 6 table

    Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture

    Get PDF
    Abstract Background Neurons are highly polarized cells consisting of three distinct functional domains: the cell body (and associated dendrites), the axon and the synapse. Previously, it was believed that the clinical phenotypes of neurodegenerative diseases were caused by the loss of entire neurons, however it has recently become apparent that these neuronal sub-compartments can degenerate independently, with synapses being particularly vulnerable to a broad range of stimuli. Whilst the properties governing the differential degenerative mechanisms remain unknown, mitochondria consistently appear in the literature, suggesting these somewhat promiscuous organelles may play a role in affecting synaptic stability. Synaptic and non-synaptic mitochondrial subpools are known to have different enzymatic properties (first demonstrated by Lai et al., 1977). However, the molecular basis underpinning these alterations, and their effects on morphology, has not been well documented. Methods The current study has employed electron microscopy, label-free proteomics and in silico analyses to characterize the morphological and biochemical properties of discrete sub-populations of mitochondria. The physiological relevance of these findings was confirmed in-vivo using a molecular genetic approach at the Drosophila neuromuscular junction. Results Here, we demonstrate that mitochondria at the synaptic terminal are indeed morphologically different to non-synaptic mitochondria, in both rodents and human patients. Furthermore, generation of proteomic profiles reveals distinct molecular fingerprints – highlighting that the properties of complex I may represent an important specialisation of synaptic mitochondria. Evidence also suggests that at least 30% of the mitochondrial enzymatic activity differences previously reported can be accounted for by protein abundance. Finally, we demonstrate that the molecular differences between discrete mitochondrial sub-populations are capable of selectively influencing synaptic morphology in-vivo. We offer several novel mitochondrial candidates that have the propensity to significantly alter the synaptic architecture in-vivo. Conclusions Our study demonstrates discrete proteomic profiles exist dependent upon mitochondrial subcellular localization and selective alteration of intrinsic mitochondrial proteins alters synaptic morphology in-vivo

    Study on Growth Kinetics of CdSe Nanocrystals with a New Model

    Get PDF
    A model which involves both bulk diffusion process and surface reaction process has been developed for describing the growth behaviour of nanoparticles. When the model is employed, hypothesising that either of the processes alone dominates the overall growth process is unnecessary. Conversely, the relative magnitude of contributions from both processes could be obtained from the model. Using this model in our system, the growth process of CdSe QDs demonstrated two different growth stages. During the first stage, the growth of CdSe QDs was dominated by bulk diffusion, whereas, neither the bulk diffusion process nor the surface reaction process could be neglected during the later stage. At last, we successfully modelled the Ostwald ripening of CdSe QDs with LSW theories

    Therapeutic targeting of membrane-associated GRP78 in leukemia and lymphoma : preclinical efficacy in vitro and formal toxicity study of BMTP-78 in rodents and primates

    Get PDF
    Translation of drug candidates into clinical settings requires demonstration of preclinical efficacy and formal toxicology analysis for filling an Investigational New Drug (IND) application with the US Food and Drug Administration (FDA). Here, we investigate the membrane-associated glucose response protein 78 (GRP78) as a therapeutic target in leukemia and lymphoma. We evaluated the efficacy of the GRP78-targeted proapoptotic drug bone metastasis targeting peptidomimetic 78 (BMTP-78), a member of the D (KLAKLAK)2-containing class of agents. BMTP-78 was validated in cells from patients with acute myeloid leukemia and in a panel of human leukemia and lymphoma cell lines, where it induced dose-dependent cytotoxicity in all samples tested. Based on the in vitro efficacy of BMTP-78, we performed formal good laboratory practice toxicology studies in both rodents (mice and rats) and nonhuman primates (cynomolgus and rhesus monkeys). These analyses represent required steps towards an IND application of BMTP-78 for theranostic first-in-human clinical trials.Peer reviewe

    Increased Risk of Breast Cancer Associated with CC Genotype of Has-miR-146a Rs2910164 Polymorphism in Europeans

    Get PDF
    Background: Emerging evidence suggests that microRNAs play a critical role in the pathogenesis of breast cancer. Several molecular epidemiological studies were conducted in recent years to evaluate the association between has-miR-146a rs2910164 polymorphism and breast cancer risk in diverse populations. However, the results remain conflicting rather than conclusive. Methodology/Principal findings: We performed a meta-analysis of 6 case-control studies that included 4238 breast-cancer cases and 4469 case-free controls. We assessed the strength of the association, using odds ratios (ORs) with 95 % confidence intervals (CIs). Overall, this meta-analysis showed that the rs2910164 polymorphism was not associated with a significantly increased risk of breast cancer in all genetic models (for GC vs GG: OR = 1.00, 95 % CI = 0.9021.09, Pheterpgeneity = 0.364; for CC vs GG: OR=1.16, 95 % CI=0.9821.36, P heterpgeneity =0.757; for GC+CC vs GG: OR=1.02, 95 % CI=0.9321.12, Pheterpgeneity = 0.562; for CC vs GC+GG: OR = 1.10, 95 % CI = 0.9621.26, Pheterpgeneity = 0.441). However, in the stratified analysis by ethnicity, we found the rs2910164 polymorphism was associated with increased breast cancer risk among Europeans in homozygote comparison (CC vs. GG: OR = 1.29, 95%CI = 1.0221.63, Pheterpgeneity = 0.950, P = 0.032) and recessive model (CC vs. GC+GG: OR = 1.31, 95%CI = 1.0521.65, P heterpgeneity = 0.839, P = 0.019). No publication bias was found in the present study
    corecore