2,833 research outputs found

    Collective excitations in quantum Hall liquid crystals: Single-mode approximation calculations

    Get PDF
    A variety of recent experiments probing the low-temperature transport properties of quantum Hall systems have suggested an interpretation in terms of liquid crystalline mesophases dubbed {\em quantum Hall liquid crystals}. The single mode approximation (SMA) has been a useful tool for the determination of the excitation spectra of various systems such as phonons in 4^4He and in the fractional quantum Hall effect. In this paper we calculate (via the SMA) the spectrum of collective excitations in a quantum Hall liquid crystal by considering {\em nematic}, {\em tetratic}, and {\em hexatic} generalizations of Laughlin's trial wave function having two-, four- and six-fold broken rotational symmetry, respectively. In the limit of zero wavevector \qq the dispersion of these modes is singular, with a gap that is dependent on the direction along which \qq=0 is approached for {\em nematic} and {\em tetratic} liquid crystalline states, but remains regular in the {\em hexatic} state, as permitted by the fourth order wavevector dependence of the (projected) oscillator strength and static structure factor.Comment: 6 pages, 5 eps figures include

    The feasibility of sea surface temperature determination using satellite infrared data

    Get PDF
    Sea surface temperature determination feasibility using satellite infrared dat

    Evaluation of the cardiovascular system during various circulatory stresses Progress report, 1 Sep. 1968 - 1 May 1969

    Get PDF
    Cardiac response to chemotherapy after myocardial infraction and diagnostic methods of heart disease in man and animal

    Iordanskii Force and the Gravitational Aharonov-Bohm effect for a Moving Vortex

    Full text link
    I discuss the scattering of phonons by a vortex moving with respect to a superfluid condensate. This allows us to test the compatibility of the scattering-theory derivation of the Iordanskii force with the galilean invariance of the underlying fluid dynamics. In order to obtain the correct result we must retain O(vs2)O(v_s^2) terms in the sound-wave equation, and this reinforces the interpretation, due to Volovik, of the Iordanskii force as an analogue of the gravitational Bohm-Aharonov effect.Comment: 20 pages, LaTe
    corecore