700 research outputs found

    Prospects for probing strong gravity with a pulsar-black hole system

    Full text link
    The discovery of a pulsar (PSR) in orbit around a black hole (BH) is expected to provide a superb new probe of relativistic gravity and BH properties. Apart from a precise mass measurement for the BH, one could expect a clean verification of the dragging of space-time caused by the BH spin. In order to measure the quadrupole moment of the BH for testing the no-hair theorem of general relativity (GR), one has to hope for a sufficiently massive BH. In this respect, a PSR orbiting the super-massive BH in the center of our Galaxy would be the ultimate laboratory for gravity tests with PSRs. But even for gravity theories that predict the same properties for BHs as GR, a PSR-BH system would constitute an excellent test system, due to the high grade of asymmetry in the strong field properties of these two components. Here we highlight some of the potential gravity tests that one could expect from different PSR-BH systems, utilizing present and future radio telescopes, like FAST and SKA.Comment: Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and Opportunities after 80 years", J. van Leeuwen (ed.); 6 pages, 3 figure

    A new test of conservation laws and Lorentz invariance in relativistic gravity

    Full text link
    General relativity predicts that energy and momentum conservation laws hold and that preferred frames do not exist. The parametrised post-Newtonian formalism (PPN) phenomenologically quantifies possible deviations from general relativity. The PPN parameter alpha_3 (which identically vanishes in general relativity) plays a dual role in that it is associated both with a violation of the momentum conservation law, and with the existence of a preferred frame. By considering the effects of alpha_3 neq 0 in certain binary pulsar systems, it is shown that alpha_3 < 2.2 x 10^-20 (90% CL). This limit improves on previous results by several orders of magnitude, and shows that pulsar tests of alpha_3 rank (together with Hughes-Drever-type tests of local Lorentz invariance) among the most precise null experiments of physics.Comment: Submitted to Classical Quantum Gravity, LaTeX, requires ioplppt.sty, no figure

    Prospects for Probing the Spacetime of Sgr A* with Pulsars

    Full text link
    The discovery of radio pulsars in compact orbits around Sgr A* would allow an unprecedented and detailed investigation of the spacetime of the supermassive black hole. This paper shows that pulsar timing, including that of a single pulsar, has the potential to provide novel tests of general relativity, in particular its cosmic censorship conjecture and no-hair theorem for rotating black holes. These experiments can be performed by timing observations with 100 micro-second precision, achievable with the Square Kilometre Array for a normal pulsar at frequency above 15 GHz. Based on the standard pulsar timing technique, we develop a method that allows the determination of the mass, spin, and quadrupole moment of Sgr A*, and provides a consistent covariance analysis of the measurement errors. Furthermore, we test this method in detailed mock data simulations. It seems likely that only for orbital periods below ~0.3 yr is there the possibility of having negligible external perturbations. For such orbits we expect a ~10^-3 test of the frame dragging and a ~10^-2 test of the no-hair theorem within 5 years, if Sgr A* is spinning rapidly. Our method is also capable of identifying perturbations caused by distributed mass around Sgr A*, thus providing high confidence in these gravity tests. Our analysis is not affected by uncertainties in our knowledge of the distance to the Galactic center, R0. A combination of pulsar timing with the astrometric results of stellar orbits would greatly improve the measurement precision of R0.Comment: 12 pages, 10 Figures, accepted for publication in Ap

    The Arecibo 430-MHz Intermediate Galactic Latitude Survey: Discovery of Nine Radio Pulsars

    Get PDF
    We have used the Arecibo Radio Telescope to search for millisecond pulsars in two intermediate Galactic latitude regions (7 deg < | b | < 20 deg) accessible to this telescope. For these latitudes the useful millisecond pulsar search volume achieved by Arecibo's 430-MHz beam is predicted to be maximal. Searching a total of 130 square degrees, we have discovered nine new pulsars and detected four previously known objects. We compare the results of this survey with those of other 430-MHz surveys carried out at Arecibo and of an intermediate latitude survey made at Parkes that included part of our search area; the latter independently found two of the nine pulsars we have discovered. At least six of our discoveries are isolated pulsars with ages between 5 and 300 Myr; one of these, PSR J1819+1305, exhibits very marked and periodic nulling. We have also found a recycled pulsar, PSR J2016+1948. With a rotational period of 65 ms, this is a member of a binary system with a 635-day orbital period. We discuss some of the the properties of this system in detail, and indicate its potential to provide a test of the Strong Equivalence Principle. This pulsar and PSR J0407+16, a similar system now being timed at Arecibo, are by far the best systems known for such a test.Comment: Accepted for publication in ApJ Referee format: 22 pages, 7 figure

    Observing Radio Pulsars in the Galactic Centre with the Square Kilometre Array

    Full text link
    The discovery and timing of radio pulsars within the Galactic centre is a fundamental aspect of the SKA Science Case, responding to the topic of "Strong Field Tests of Gravity with Pulsars and Black Holes" (Kramer et al. 2004; Cordes et al. 2004). Pulsars have in many ways proven to be excellent tools for testing the General theory of Relativity and alternative gravity theories (see Wex (2014) for a recent review). Timing a pulsar in orbit around a companion, provides a unique way of probing the relativistic dynamics and spacetime of such a system. The strictest tests of gravity, in strong field conditions, are expected to come from a pulsar orbiting a black hole. In this sense, a pulsar in a close orbit (PorbP_{\rm orb} < 1 yr) around our nearest supermassive black hole candidate, Sagittarius A* - at a distance of ~8.3 kpc in the Galactic centre (Gillessen et al. 2009a) - would be the ideal tool. Given the size of the orbit and the relativistic effects associated with it, even a slowly spinning pulsar would allow the black hole spacetime to be explored in great detail (Liu et al. 2012). For example, measurement of the frame dragging caused by the rotation of the supermassive black hole, would allow a test of the "cosmic censorship conjecture." The "no-hair theorem" can be tested by measuring the quadrupole moment of the black hole. These are two of the prime examples for the fundamental studies of gravity one could do with a pulsar around Sagittarius A*. As will be shown here, SKA1-MID and ultimately the SKA will provide the opportunity to begin to find and time the pulsars in this extreme environment.Comment: 14 pages, 5 figures, to be published in: "Advancing Astrophysics with the Square Kilometre Array", Proceedings of Science, PoS(AASKA14)04

    Can we see pulsars around Sgr A*? - The latest searches with the Effelsberg telescope

    Full text link
    Radio pulsars in relativistic binary systems are unique tools to study the curved space-time around massive compact objects. The discovery of a pulsar closely orbiting the super-massive black hole at the centre of our Galaxy, Sgr A*, would provide a superb test-bed for gravitational physics. To date, the absence of any radio pulsar discoveries within a few arc minutes of Sgr A* has been explained by one principal factor: extreme scattering of radio waves caused by inhomogeneities in the ionized component of the interstellar medium in the central 100 pc around Sgr A*. Scattering, which causes temporal broadening of pulses, can only be mitigated by observing at higher frequencies. Here we describe recent searches of the Galactic centre region performed at a frequency of 18.95 GHz with the Effelsberg radio telescope.Comment: 3 pages, 2 figures, Proceedings of IAUS 291 "Neutron Stars and Pulsars: Challenges and Opportunities after 80 years", 201

    Pulsar J1411+2551: A Low Mass New Double Neutron Star System

    Get PDF
    In this work, we report the discovery and characterization of PSR J1411+2551, a new binary pulsar discovered in the Arecibo 327 MHz Drift Pulsar Survey. Our timing observations of the radio pulsar in the system span a period of about 2.5 years. This timing campaign allowed a precise measurement of its spin period (62.4 ms) and its derivative (9.6 ±\pm 0.7) ×10−20 s s−1\times 10^{-20}\, \rm s\, s^{-1}; from these, we derive a characteristic age of ∼10 \sim 10\,Gyr and a surface magnetic field strength of 2.5 ×109\times 10^{9} G. These numbers indicate that this pulsar was mildly recycled by accretion of matter from the progenitor of the companion star. The system has an eccentric (e = 0.17e\, = \, 0.17) 2.61 day orbit. This eccentricity allows a highly significant measurement of the rate of advance of periastron, ω˙=0.07686±0.00046∘ yr−1\dot{\omega} = 0.07686 \pm 0.00046 ^{\circ}~{\rm yr}^{-1}. Assuming general relativity accurately models the orbital motion, this implies a total system mass M = 2.538±0.022M⊙2.538 \pm 0.022 M_{\odot}. The minimum companion mass is 0.92 M⊙0.92\, M_{\odot} and the maximum pulsar mass is 1.62 M⊙1.62\, M_{\odot}. The large companion mass and the orbital eccentricity suggest that PSR J1411+2551 is a double neutron star system; the lightest known to date including the DNS merger GW 170817. Furthermore, the relatively low orbital eccentricity and small proper motion limits suggest that the second supernova had a relatively small associated kick; this and the low system mass suggest that it was an ultra-stripped supernova.Comment: Accepted for publication in APJ letter

    Prospects for accurate distance measurements of pulsars with the SKA: enabling fundamental physics

    Get PDF
    Parallax measurements of pulsars allow for accurate measurements of the interstellar electron density and contribute to accurate tests of general relativity using binary systems. The Square Kilometre Array (SKA) will be an ideal instrument for measuring the parallax of pulsars, because it has a very high sensitivity, as well as baselines extending up to several thousands of kilometres. We performed simulations to estimate the number of pulsars for which the parallax can be measured with the SKA and the distance to which a parallax can be measured. We compare two different methods. The first method measures the parallax directly by utilising the long baselines of the SKA to form high angular resolution images. The second method uses the arrival times of the radio signals of pulsars to fit a transformation between time coordinates in the terrestrial frame and the comoving pulsar frame directly yielding the parallax. We find that with the first method a parallax with an accuracy of 20% or less can be measured up to a maximum distance of 13 kpc, which would include 9,000 pulsars. By timing pulsars with the most stable arrival times for the radio emission, parallaxes can be measured for about 3,600 millisecond pulsars up to a distance of 9 kpc with an accuracy of 20%.Comment: 9 pages, 8 figures, accepted for publication in A&A, table format has been modified, language edite

    Constraining the dense matter equation-of-state with radio pulsars

    Full text link
    Radio pulsars provide some of the most important constraints for our understanding of matter at supranuclear densities. So far, these constraints are mostly given by precision mass measurements of neutron stars (NS). By combining single measurements of the two most massive pulsars, J0348++0432 and J0740++6620, the resulting lower limit of 1.98 M⊙M_\odot (99% confidence) of the maximum NS mass, excludes a large number of equations of state (EOSs). Further EOS constraints, complementary to other methods, are likely to come from the measurement of the moment of inertia (MOI) of binary pulsars in relativistic orbits. The Double Pulsar, PSR J0737−-3039A/B, is the most promising system for the first measurement of the MOI via pulsar timing. Reviewing this method, based in particular on the first MeerKAT observations of the Double Pulsar, we provide well-founded projections into the future by simulating timing observations with MeerKAT and the SKA. For the first time, we account for the spin-down mass loss in the analysis. Our results suggest that an MOI measurement with 11% accuracy (68% confidence) is possible by 2030. If by 2030 the EOS is sufficiently well known, however, we find that the Double Pulsar will allow for a 7% test of Lense-Thirring precession, or alternatively provide a ∼3σ\sim3\sigma-measurement of the next-to-leading order gravitational wave damping in GR. Finally, we demonstrate that potential new discoveries of double NS systems with orbital periods shorter than that of the Double Pulsar promise significant improvements in these measurements and the constraints on NS matter.Comment: 13 pages, 8 figures. Accepted by MNRA
    • …
    corecore