30 research outputs found

    Clinical examination, critical care ultrasonography and outcomes in the critically ill : cohort profile of the Simple Intensive Care Studies-I

    Get PDF
    Purpose In the Simple Intensive Care Studies-I (SICS-I), we aim to unravel the value of clinical and haemodynamic variables obtained by physical examination and critical care ultrasound (CCUS) that currently guide daily practice in critically ill patients. We intend to (1) measure all available clinical and haemodynamic variables, (2) train novices in obtaining values for advanced variables based on CCUS in the intensive care unit (ICU) and (3) create an infrastructure for a registry with the flexibility of temporarily incorporating specific (haemodynamic) research questions and variables. The overall purpose is to investigate the diagnostic and prognostic value of clinical and haemodynamic variables. Participants The SICS-I includes all patients acutely admitted to the ICU of a tertiary teaching hospital in the Netherlands with an ICU stay expected to last beyond 24 hours. Inclusion started on 27 March 2015. Findings to date On 31 December 2016, 791 eligible patients fulfilled our inclusion criteria of whom 704 were included. So far 11 substudies with additional variables have been designed, of which six were feasible to implement in the basic study, and two are planned and awaiting initiation. All researchers received focused training for obtaining specific CCUS images. An independent Core laboratory judged that 632 patients had CCUS images of sufficient quality. Future plans We intend to optimise the set of variables for assessment of the haemodynamic status of the critically ill patient used for guiding diagnostics, prognosis and interventions. Repeated evaluations of these sets of variables are needed for continuous improvement of the diagnostic and prognostic models. Future plans include: (1) more advanced imaging; (2) repeated clinical and haemodynamic measurements; (3) expansion of the registry to other departments or centres; and (4) exploring possibilities of integration of a randomised clinical trial superimposed on the registry. Study registration number NCT02912624; Pre-results.Peer reviewe

    Agents intervening against delirium in the intensive care unit (AID-ICU) - Protocol for a randomised placebo-controlled trial of haloperidol in patients with delirium in the ICU

    Get PDF
    Background Delirium among patients in the intensive care unit (ICU) is a common condition associated with increased morbidity and mortality. Haloperidol is the most frequently used pharmacologic intervention, but its use is not supported by firm evidence. Therefore, we are conducting Agents Intervening against Delirium in the Intensive Care Unit (AID‐ICU) trial to assess the benefits and harms of haloperidol for the treatment of ICU‐acquired delirium. Methods AID‐ICU is an investigator‐initiated, pragmatic, international, randomised, blinded, parallel‐group, trial allocating adult ICU patients with manifest delirium 1:1 to haloperidol or placebo. Trial participants will receive intravenous 2.5 mg haloperidol three times daily or matching placebo (isotonic saline 0.9%) if they are delirious. If needed, a maximum of 20 mg/daily haloperidol/placebo is given. An escape protocol, not including haloperidol, is part of the trial protocol. The primary outcome is days alive out of the hospital within 90 days post‐randomisation. Secondary outcomes are number of days without delirium or coma, serious adverse reactions to haloperidol, usage of escape medication, number of days alive without mechanical ventilation; mortality, health‐related quality‐of‐life and cognitive function at 1‐year follow‐up. A sample size of 1000 patients is required to detect a 7‐day improvement or worsening of the mean days alive out of the hospital, type 1 error risk of 5% and power 90%. Perspective The AID‐ICU trial is based on gold standard methodology applied to a large sample of clinically representative patients and will provide pivotal high‐quality data on the benefits and harms of haloperidol for the treatment ICU‐acquired delirium

    The diagnostic accuracy of clinical examination for estimating cardiac index in critically ill patients:the Simple Intensive Care Studies-I

    Get PDF
    PurposeClinical examination is often the first step to diagnose shock and estimate cardiac index. In the Simple Intensive Care Studies-I, we assessed the association and diagnostic performance of clinical signs for estimation of cardiac index in critically ill patients.MethodsIn this prospective, single-centre cohort study, we included all acutely ill patients admitted to the ICU and expected to stay>24h. We conducted a protocolised clinical examination of 19 clinical signs followed by critical care ultrasonography for cardiac index measurement. Clinical signs were associated with cardiac index and a low cardiac index (4.5s, or skin mottling over the knee.ConclusionsSeven out of 19 clinical examination findings were independently associated with cardiac index. For estimation of cardiac index, clinical examination was found to be insufficient in multivariable analyses and in diagnostic accuracy tests. Additional measurements such as critical care ultrasonography remain necessary

    A new tool to assess Clinical Diversity In Meta‐analyses (CDIM) of interventions

    Get PDF
    OBJECTIVE: To develop and validate Clinical Diversity In Meta-analyses (CDIM), a new tool for assessing clinical diversity between trials in meta-analyses of interventions.STUDY DESIGN AND SETTING: The development of CDIM was based on consensus work informed by empirical literature and expertise. We drafted the CDIM tool, refined it, and validated CDIM for interrater scale reliability and agreement in three groups.RESULTS: CDIM measures clinical diversity on a scale that includes four domains with 11 items overall: setting (time of conduct/country development status/units type); population (age, sex, patient inclusion criteria/baseline disease severity, comorbidities); interventions (intervention intensity/strength/duration of intervention, timing, control intervention, cointerventions); and outcome (definition of outcome, timing of outcome assessment). The CDIM is completed in two steps: first two authors independently assess clinical diversity in the four domains. Second, after agreeing upon scores of individual items a consensus score is achieved. Interrater scale reliability and agreement ranged from moderate to almost perfect depending on the type of raters.CONCLUSION: CDIM is the first tool developed for assessing clinical diversity in meta-analyses of interventions. We found CDIM to be a reliable tool for assessing clinical diversity among trials in meta-analysis.</p

    Restrictive versus liberal transfusion strategy for red blood cell transfusion:systematic review of randomised trials with meta-analysis and trial sequential analysis

    No full text
    Objective To compare the benefit and harm of restrictive versus liberal transfusion strategies to guide red blood cell transfusions. Design Systematic review with meta-analyses and trial sequential analyses of randomised clinical trials. Data sources Cochrane central register of controlled trials, SilverPlatter Medline (1950 to date), SilverPlatter Embase (1980 to date), and Science Citation Index Expanded (1900 to present). Reference lists of identified trials and other systematic reviews were assessed, and authors and experts in transfusion were contacted to identify additional trials. Trial selection Published and unpublished randomised clinical trials that evaluated a restrictive compared with a liberal transfusion strategy in adults or children, irrespective of language, blinding procedure, publication status, or sample size. Data extraction Two authors independently screened titles and abstracts of trials identified, and relevant trials were evaluated in full text for eligibility. Two reviewers then independently extracted data on methods, interventions, outcomes, and risk of bias from included trials. random effects models were used to estimate risk ratios and mean differences with 95% confidence intervals. Results 31 trials totalling 9813 randomised patients were included. The proportion of patients receiving red blood cells (relative risk 0.54, 95% confidence interval 0.47 to 0.63, 8923 patients, 24 trials) and the number of red blood cell units transfused (mean difference −1.43, 95% confidence interval −2.01 to −0.86) were lower with the restrictive compared with liberal transfusion strategies. Restrictive compared with liberal transfusion strategies were not associated with risk of death (0.86, 0.74 to 1.01, 5707 patients, nine lower risk of bias trials), overall morbidity (0.98, 0.85 to 1.12, 4517 patients, six lower risk of bias trials), or fatal or non-fatal myocardial infarction (1.28, 0.66 to 2.49, 4730 patients, seven lower risk of bias trials). Results were not affected by the inclusion of trials with unclear or high risk of bias. Using trial sequential analyses on mortality and myocardial infarction, the required information size was not reached, but a 15% relative risk reduction or increase in overall morbidity with restrictive transfusion strategies could be excluded. Conclusions Compared with liberal strategies, restrictive transfusion strategies were associated with a reduction in the number of red blood cell units transfused and number of patients being transfused, but mortality, overall morbidity, and myocardial infarction seemed to be unaltered. Restrictive transfusion strategies are safe in most clinical settings. Liberal transfusion strategies have not been shown to convey any benefit to patients. Trial registration PROSPERO CRD42013004272

    Pharmacological interventions for delirium in intensive care patients: a protocol for an overview of reviews

    Get PDF
    Search strategies for Cochrane Library, MEDLINE (OvidSP), EMBASE (OvidSP), Science Citation Index (web of science), BIOSIS Citation Index (web of science), Cumulative Index to Nursing & Allied Health Literature (CINAHL), Latin American Caribbean Health Sciences Literature (LILACS) and Allied and Complementary Medicine Database (AMED). (DOCX 30 kb
    corecore