71 research outputs found

    Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures by hard X-ray photoelectron spectroscopy

    Full text link
    The conducting interface of LaAlO3_3/SrTiO3_3 heterostructures has been studied by hard X-ray photoelectron spectroscopy. From the Ti~2pp signal and its angle-dependence we derive that the thickness of the electron gas is much smaller than the probing depth of 4 nm and that the carrier densities vary with increasing number of LaAlO3_3 overlayers. Our results point to an electronic reconstruction in the LaAlO3_3 overlayer as the driving mechanism for the conducting interface and corroborate the recent interpretation of the superconducting ground state as being of the Berezinskii-Kosterlitz-Thouless type.Comment: 4 pages, 4 figure

    Tumour auto-contouring on 2d cine MRI for locally advanced lung cancer: A comparative study

    Get PDF
    BACKGROUND AND PURPOSE: Radiotherapy guidance based on magnetic resonance imaging (MRI) is currently becoming a clinical reality. Fast 2d cine MRI sequences are expected to increase the precision of radiation delivery by facilitating tumour delineation during treatment. This study compares four auto-contouring algorithms for the task of delineating the primary tumour in six locally advanced (LA) lung cancer patients. MATERIAL AND METHODS: Twenty-two cine MRI sequences were acquired using either a balanced steady-state free precession or a spoiled gradient echo imaging technique. Contours derived by the auto-contouring algorithms were compared against manual reference contours. A selection of eight image data sets was also used to assess the inter-observer delineation uncertainty. RESULTS: Algorithmically derived contours agreed well with the manual reference contours (median Dice similarity index: ⩾0.91). Multi-template matching and deformable image registration performed significantly better than feature-driven registration and the pulse-coupled neural network (PCNN). Neither MRI sequence nor image orientation was a conclusive predictor for algorithmic performance. Motion significantly degraded the performance of the PCNN. The inter-observer variability was of the same order of magnitude as the algorithmic performance. CONCLUSION: Auto-contouring of tumours on cine MRI is feasible in LA lung cancer patients. Despite large variations in implementation complexity, the different algorithms all have relatively similar performance

    Respiratory motion modelling for MR-guided lung cancer radiotherapy: model development and geometric accuracy evaluation.

    Get PDF
    Objective.Respiratory motion of lung tumours and adjacent structures is challenging for radiotherapy. Online MR-imaging cannot currently provide real-time volumetric information of the moving patient anatomy, therefore limiting precise dose delivery, delivered dose reconstruction, and downstream adaptation methods.Approach.We tailor a respiratory motion modelling framework towards an MR-Linac workflow to estimate the time-resolved 4D motion from real-time data. We develop a multi-slice acquisition scheme which acquires thick, overlapping 2D motion-slices in different locations and orientations, interleaved with 2D surrogate-slices from a fixed location. The framework fits a motion model directly to the input data without the need for sorting or binning to account for inter- and intra-cycle variation of the breathing motion. The framework alternates between model fitting and motion-compensated super-resolution image reconstruction to recover a high-quality motion-free image and a motion model. The fitted model can then estimate the 4D motion from 2D surrogate-slices. The framework is applied to four simulated anthropomorphic datasets and evaluated against known ground truth anatomy and motion. Clinical applicability is demonstrated by applying our framework to eight datasets acquired on an MR-Linac from four lung cancer patients.Main results.The framework accurately reconstructs high-quality motion-compensated 3D images with 2 mm3isotropic voxels. For the simulated case with the largest target motion, the motion model achieved a mean deformation field error of 1.13 mm. For the patient cases residual error registrations estimate the model error to be 1.07 mm (1.64 mm), 0.91 mm (1.32 mm), and 0.88 mm (1.33 mm) in superior-inferior, anterior-posterior, and left-right directions respectively for the building (application) data.Significance.The motion modelling framework estimates the patient motion with high accuracy and accurately reconstructs the anatomy. The image acquisition scheme can be flexibly integrated into an MR-Linac workflow whilst maintaining the capability of online motion-management strategies based on cine imaging such as target tracking and/or gating

    Optimal acquisition scheme for flow-compensated intravoxel incoherent motion diffusion-weighted imaging in the abdomen: An accurate and precise clinically feasible protocol.

    Get PDF
    Purpose Flow-compensated (FC) diffusion-weighted MRI (DWI) for intravoxel-incoherent motion (IVIM) modeling allows for a more detailed description of tissue microvasculature than conventional IVIM. The long acquisition time of current FC-IVIM protocols, however, has prohibited clinical application. Therefore, we developed an optimized abdominal FC-IVIM acquisition with a clinically feasible scan time.Methods Precision and accuracy of the FC-IVIM parameters were assessed by fitting the FC-IVIM model to signal decay curves, simulated for different acquisition schemes. Diffusion-weighted acquisitions were added subsequently to the protocol, where we chose the combination of b-value, diffusion time and gradient profile (FC or bipolar) that resulted in the largest improvement to its accuracy and precision. The resulting two optimized FC-IVIM protocols with 25 and 50 acquisitions (FC-IVIMopt25 and FC-IVIMopt50 ), together with a complementary acquisition consisting of 50 diffusion-weighting (FC-IVIMcomp ), were acquired in repeated abdominal free-breathing FC-IVIM imaging of seven healthy volunteers. Intersession and intrasession within-subject coefficient of variation of the FC-IVIM parameters were compared for the liver, spleen, and kidneys.Results Simulations showed that the performance of FC-IVIM improved in tissue with larger perfusion fraction and signal-to-noise ratio. The scan time of the FC-IVIMopt25 and FC-IVIMopt50 protocols were 8 and 16 min. The best in vivo performance was seen in FC-IVIMopt50 . The intersession within-subject coefficients of variation of FC-IVIMopt50 were 11.6%, 16.3%, 65.5%, and 36.0% for FC-IVIM model parameters diffusivity, perfusion fraction, characteristic time and blood flow velocity, respectively.Conclusions We have optimized the FC-IVIM protocol, allowing for clinically feasible scan times (8-16 min)

    Super-resolution T2-weighted 4D MRI for image guided radiotherapy

    Get PDF
    BACKGROUND AND PURPOSE: The superior soft-tissue contrast of 4D-T2w MRI motivates its use for delineation in radiotherapy treatment planning. We address current limitations of slice-selective implementations, including thick slices and artefacts originating from data incompleteness and variable breathing. MATERIALS AND METHODS: A method was developed to calculate midposition and 4D-T2w images of the whole thorax from continuously acquired axial and sagittal 2D-T2w MRI (1.5 × 1.5 × 5.0 mm3). The method employed image-derived respiratory surrogates, deformable image registration and super-resolution reconstruction. Volunteer imaging and a respiratory motion phantom were used for validation. The minimum number of dynamic acquisitions needed to calculate a representative midposition image was investigated by retrospectively subsampling the data (10-30 dynamic acquisitions). RESULTS: Super-resolution 4D-T2w MRI (1.0 × 1.0 × 1.0 mm3, 8 respiratory phases) did not suffer from data incompleteness and exhibited reduced stitching artefacts compared to sorted multi-slice MRI. Experiments using a respiratory motion phantom and colour-intensity projection images demonstrated a minor underestimation of the motion range. Midposition diaphragm differences in retrospectively subsampled acquisitions were <1.1 mm compared to the full dataset. 10 dynamic acquisitions were found sufficient to generate midposition MRI. CONCLUSIONS: A motion-modelling and super-resolution method was developed to calculate high quality 4D/midposition T2w MRI from orthogonal 2D-T2w MRI

    Super-resolution T2-weighted 4D MRI for image guided radiotherapy.

    Get PDF
    BACKGROUND AND PURPOSE:The superior soft-tissue contrast of 4D-T2w MRI motivates its use for delineation in radiotherapy treatment planning. We address current limitations of slice-selective implementations, including thick slices and artefacts originating from data incompleteness and variable breathing. MATERIALS AND METHODS:A method was developed to calculate midposition and 4D-T2w images of the whole thorax from continuously acquired axial and sagittal 2D-T2w MRI (1.5 × 1.5 × 5.0 mm3). The method employed image-derived respiratory surrogates, deformable image registration and super-resolution reconstruction. Volunteer imaging and a respiratory motion phantom were used for validation. The minimum number of dynamic acquisitions needed to calculate a representative midposition image was investigated by retrospectively subsampling the data (10-30 dynamic acquisitions). RESULTS:Super-resolution 4D-T2w MRI (1.0 × 1.0 × 1.0 mm3, 8 respiratory phases) did not suffer from data incompleteness and exhibited reduced stitching artefacts compared to sorted multi-slice MRI. Experiments using a respiratory motion phantom and colour-intensity projection images demonstrated a minor underestimation of the motion range. Midposition diaphragm differences in retrospectively subsampled acquisitions were <1.1 mm compared to the full dataset. 10 dynamic acquisitions were found sufficient to generate midposition MRI. CONCLUSIONS:A motion-modelling and super-resolution method was developed to calculate high quality 4D/midposition T2w MRI from orthogonal 2D-T2w MRI
    • …
    corecore