25 research outputs found
New insights into the kinetics and variability of egg excretion in controlled human hookworm infections
Four healthy volunteers were infected with 50 Necator americanus infective larvae (L3) in a controlled human hookworm infection trial and followed for 52 weeks. The kinetics of fecal egg counts in volunteers was assessed with Bayesian multilevel analysis, which revealed an increase between weeks 7 and 13, followed by an egg density plateau of about 1000 eggs/g of feces. Variation in egg counts was minimal between same-day measurements but varied considerably between days, particularly during the plateau phase. These analyses pave the way for the controlled human hookworm model to accelerate drug and vaccine efficacy studies
Future of Dutch NGS-Based Newborn Screening: Exploring the Technical Possibilities and Assessment of a Variant Classification Strategy
In this study, we compare next-generation sequencing (NGS) approaches (targeted panel (tNGS), whole exome sequencing (WES), and whole genome sequencing (WGS)) for application in newborn screening (NBS). DNA was extracted from dried blood spots (DBS) from 50 patients with genetically confirmed inherited metabolic disorders (IMDs) and 50 control samples. One hundred IMD-related genes were analyzed. Two data-filtering strategies were applied: one to detect only (likely) pathogenic ((L)P) variants, and one to detect (L)P variants in combination with variants of unknown significance (VUS). The variants were filtered and interpreted, defining true/false positives (TP/FP) and true/false negatives (TN/FN). The variant filtering strategies were assessed in a background cohort (BC) of 4833 individuals. Reliable results were obtained within 5 days. TP results (47 patient samples) for tNGS, WES, and WGS results were 33, 31, and 30, respectively, using the (L)P filtering, and 40, 40, and 38, respectively, when including VUS. FN results were 11, 13, and 14, respectively, excluding VUS, and 4, 4, and 6, when including VUS. The remaining FN were mainly samples with a homozygous VUS. All controls were TN. Three BC individuals showed a homozygous (L)P variant, all related to a variable, mild phenotype. The use of NGS-based workflows in NBS seems promising, although more knowledge of data handling, automated variant interpretation, and costs is needed before implementation
Cell Specific eQTL Analysis without Sorting Cells
The functional consequences of trait associated SNPs are often investigated using expression quantitative trait locus (eQTL) mapping. While trait-associated variants may operate in a cell-type specific manner, eQTL datasets for such cell-types may not always be available. We performed a genome-environment interaction (GxE) meta-analysis on data from 5,683 samples to infer the cell type specificity of whole blood cis-eQTLs. We demonstrate that this method is able to predict neutrophil and lymphocyte specific cis-eQTLs and replicate these predictions in independent cell-type specific datasets. Finally, we show that SNPs associated with Crohnâs disease preferentially affect gene expression within neutrophils, including the archetypal NOD2 locus
Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection
Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year). Minor cervical traumas, infection, migraine and hypertension are putative risk factors, and inverse associations with obesity and hypercholesterolemia are described. No confirmed genetic susceptibility factors have been identified using candidate gene approaches. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69-0.82; P = 4.46 Ă 10(-10)), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 Ă 10(-3); combined P = 1.00 Ă 10(-11)). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions
The effect of antifibrotic drugs in rat precision-cut fibrotic liver slices
Two important signaling pathways in liver fibrosis are the PDGF-and TGF beta pathway and compounds inhibiting these pathways are currently developed as antifibrotic drugs. Testing antifibrotic drugs requires large numbers of animal experiments with high discomfort. Therefore, a method to study these drugs ex vivo was developed using precision-cut liver slices from fibrotic rat livers (fPCLS), representing an ex vivo model with a multicellular fibrotic environment. We characterized the fibrotic process in fPCLS from rat livers after 3 weeks of bile duct ligation (BDL) during incubation and tested compounds predominantly inhibiting the TGFb pathway (perindopril, valproic acid, rosmarinic acid, tetrandrine and pirfenidone) and PDGF pathway (imatinib, sorafenib and sunitinib). Gene expression of heat shock protein 47 (Hsp47), a smooth muscle actin (alpha Sma) and pro-collagen 1A1 (Pcol1A1) and protein expression of collagens were determined. During 48 hours of incubation, the fibrosis process continued in control fPCLS as judged by the increased gene expression of the three fibrosis markers, and the protein expression of collagen 1, mature fibrillar collagen and total collagen. Most PDGF-inhibitors and TGF beta-inhibitors significantly inhibited the increase in gene expression of Hsp47, aSma and Pcol1A1. Protein expression of collagen 1 was significantly reduced by all PDGF-inhibitors and TGFb-inhibitors, while total collagen was decreased by rosmarinic acid and tetrandrine only. However, fibrillar collagen expression was not changed by any of the drugs. In conclusion, rat fPCLS can be used as a functional ex vivo model of established liver fibrosis to test antifibrotic compounds inhibiting the PDGF-and TGFb signalling pathway
Precision-cut liver slices as a model for the early onset of liver fibrosis to test antifibrotic drugs
Induction of fibrosis during prolonged culture of precision-cut liver slices (PCLS) was reported. In this study, the use of rat PCLS was investigated to further characterize the mechanism of early onset of fibrosis in this model and the effects of antifibrotic compounds. Rat PCLS were incubated for 48 h, viability was assessed by ATP and gene expression of PDGF-B and TGF-beta 1 and the fibrosis markers Hsp47, alpha Sma and Pcol1A1 and collagen1 protein expressions were determined. The effects of the antifibrotic drugs imatinib, sorafenib and sunitinib, PDGF-pathway inhibitors, and perindopril, valproic acid, rosmarinic acid, tetrandrine and pirfenidone, TGF beta-pathway inhibitors, were determined. After 48 h of incubation, viability of the PCLS was maintained and gene expression of PDGF-B was increased while TGF-beta 1 was not changed. Hsp47, alpha Sma and Pcol1A1 gene expressions were significantly elevated in PCLS after 48 h, which was further increased by PDGF-BB and TGF-beta 1. The increased gene expression of fibrosis markers was inhibited by all three PDGF-inhibitors, while TGF beta-inhibitors showed marginal effects. The protein expression of collagen 1 was inhibited by imatinib, perindopril, tetrandrine and pirfenidone. In conclusion, the increased gene expression of PDGF-B and the down-regulation of fibrosis markers by PDGF-pathway inhibitors, together with the absence of elevated TGF-beta 1 gene expression and the limited effect of the TGF beta-pathway inhibitors, indicated the predominance of the PDGF pathway in the early onset of fibrosis in PCLS. PCLS appear a useful model for research of the early onset of fibrosis and for testing of antifibrotic drugs acting on the PDGF pathway. (C) 2013 Elsevier Inc. All rights reserved