83 research outputs found

    ZFIN: enhancements and updates to the zebrafish model organism database

    Get PDF
    ZFIN, the Zebrafish Model Organism Database, http://zfin.org, serves as the central repository and web-based resource for zebrafish genetic, genomic, phenotypic and developmental data. ZFIN manually curates comprehensive data for zebrafish genes, phenotypes, genotypes, gene expression, antibodies, anatomical structures and publications. A wide-ranging collection of web-based search forms and tools facilitates access to integrated views of these data promoting analysis and scientific discovery. Data represented in ZFIN are derived from three primary sources: curation of zebrafish publications, individual research laboratories and collaborations with bioinformatics organizations. Data formats include text, images and graphical representations. ZFIN is a dynamic resource with data added daily as part of our ongoing curation process. Software updates are frequent. Here, we describe recent additions to ZFIN including (i) enhanced access to images, (ii) genomic features, (iii) genome browser, (iv) transcripts, (v) antibodies and (vi) a community wiki for protocols and antibodies

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource

    Alliance of Genome Resources Portal: unified model organism research platform

    Get PDF
    The Alliance of Genome Resources (Alliance) is a consortium of the major model organism databases and the Gene Ontology that is guided by the vision of facilitating exploration of related genes in human and well-studied model organisms by providing a highly integrated and comprehensive platform that enables researchers to leverage the extensive body of genetic and genomic studies in these organisms. Initiated in 2016, the Alliance is building a central portal (www.alliancegenome.org) for access to data for the primary model organisms along with gene ontology data and human data. All data types represented in the Alliance portal (e.g. genomic data and phenotype descriptions) have common data models and workflows for curation. All data are open and freely available via a variety of mechanisms. Long-term plans for the Alliance project include a focus on coverage of additional model organisms including those without dedicated curation communities, and the inclusion of new data types with a particular focus on providing data and tools for the non-model-organism researcher that support enhanced discovery about human health and disease. Here we review current progress and present immediate plans for this new bioinformatics resource

    Targeted transgene integration overcomes variability of position effects in zebrafish.

    Get PDF
    Zebrafish transgenesis is increasingly popular owing to the optical transparency and external development of embryos, which provide a scalable vertebrate model for in vivo experimentation. The ability to express transgenes in a tightly controlled spatio-temporal pattern is an important prerequisite for exploitation of zebrafish in a wide range of biomedical applications. However, conventional transgenesis methods are plagued by position effects: the regulatory environment of genomic integration sites leads to variation of expression patterns of transgenes driven by engineered cis-regulatory modules. This limitation represents a bottleneck when studying the precise function of cis-regulatory modules and their subtle variants or when various effector proteins are to be expressed for labelling and manipulation of defined sets of cells. Here, we provide evidence for the efficient elimination of variability of position effects by developing a PhiC31 integrase-based targeting method. To detect targeted integration events, a simple phenotype scoring of colour change in the lens of larvae is used. We compared PhiC31-based integration and Tol2 transgenesis in the analysis of the activity of a novel conserved enhancer from the developmentally regulated neural-specific esrrga gene. Reporter expression was highly variable among independent lines generated with Tol2, whereas all lines generated with PhiC31 into a single integration site displayed nearly identical, enhancer-specific reporter expression in brain nuclei. Moreover, we demonstrate that a modified integrase system can also be used for the detection of enhancer activity in transient transgenesis. These results demonstrate the power of the PhiC31-based transgene integration for the annotation and fine analysis of transcriptional regulatory elements and it promises to be a generally desirable tool for a range of applications, which rely on highly reproducible patterns of transgene activity in zebrafish.This work was funded by ‘BOLD’ Marie-Curie Initial Training Network; and ‘ZFHealth’ Integrating project in the Framework 7 programme of the European RESEARCH ARTICLE Development (2014) doi:10.1242/dev.100347Development Commission; University of Birmingham (F.M.); Temple University; and the National Institutes of Health (NIH) [HD061749 to D.B.]

    Transatlantic intelligence and security cooperation

    Get PDF
    Despite recent advances in transatlantic intelligence and security cooperation, significant problems remain. The bombings in Madrid in March 2004 have demonstrated how terrorists and criminals can continue to exploit the limits of hesitant or partial exchange to dangerous effect. Intelligence and security cooperation remain problematic because of the fundamental tension between an increasingly networked world, which is ideal terrain for the new religious terrorism, and highly compartmentalized national intelligence gathering. If cooperation is to improve, we require a better mutual understanding about the relationship between privacy and security to help us decide what sort of intelligence should be shared. This is a higher priority than building elaborate new structures. While most practical problems of intelligence exchange are ultimately resolvable, the challenge of agreeing what the intelligence means in broad terms is even more problematic. The last section of this article argues that shared NATO intelligence estimates would be difficult to achieve and of doubtful value
    corecore