1,962 research outputs found

    Universality in snowflake aggregation

    Get PDF
    Aggregation of ice crystals is a key process governing precipitation. Individual ice crystals exhibit considerable diversity of shape, and a wide range of physical processes could influence their aggregation; despite this we show that a simple computer model captures key features of aggregate shape and size distribution reported recently from cirrus clouds. The results prompt a new way to plot the experimental size distributions leading to remarkably good dynamical scaling. That scaling independently confirms that there is a single dominant aggregation mechanism at play, albeit our model (based on undeflected trajectories to contact) does not capture its form exactly

    Bose-Einstein Condensation and Spin Mixtures of Optically Trapped Metastable Helium

    Full text link
    We report the realization of a BEC of metastable helium-4 atoms (4He*) in an all optical potential. Up to 10^5 spin polarized 4He* atoms are condensed in an optical dipole trap formed from a single, focused, vertically propagating far off-resonance laser beam. The vertical trap geometry is chosen to best match the resolution characteristics of a delay-line anode micro-channel plate detector capable of registering single He* atoms. We also confirm the instability of certain spin state combinations of 4He* to two-body inelastic processes, which necessarily affects the scope of future experiments using optically trapped spin mixtures. In order to better quantify this constraint, we measure spin state resolved two-body inelastic loss rate coefficients in the optical trap

    Bose-Einstein condensation of metastable helium: some experimental aspects

    Full text link
    We describe our recent realization of BEC using metastable helium. All detection is done with a micruchannel plate which detects the metastables or ions coming from the trapped atom cloud. This discussion emphasizes some of the diagnostic experiments which were necessary to quantitatively analyse our results.Comment: 5 pages, 3 figure

    Theory and observations of ice particle evolution in cirrus using Doppler radar: evidence for aggregation

    Get PDF
    Vertically pointing Doppler radar has been used to study the evolution of ice particles as they sediment through a cirrus cloud. The measured Doppler fall speeds, together with radar-derived estimates for the altitude of cloud top, are used to estimate a characteristic fall time tc for the `average' ice particle. The change in radar reflectivity Z is studied as a function of tc, and is found to increase exponentially with fall time. We use the idea of dynamically scaling particle size distributions to show that this behaviour implies exponential growth of the average particle size, and argue that this exponential growth is a signature of ice crystal aggregation.Comment: accepted to Geophysical Research Letter
    • …
    corecore