470 research outputs found

    Co-combustion of sewage sludge with wood/coal in a circulating fluidised bed boiler - A study of NO and N2O emissions

    Get PDF
    Reduction of emissions of NO and N2O from co-combustion of wet or dried sewage sludge with coal or wood is investigated. This is motivated by the high nitrogen content in sewage sludge that may give rise to high emissions. An advanced air-staging method for combustion in circulating fluidised bed is applied. It is shown that with fluidised bed combustion the emissions are low as long as the sludge fraction is not too high (say, less than 25%), and the conversion of fuel nitrogen to NO or N2O is only a few percent. However, air staging as such is not efficient for high volatile fuels, and any air supply method can be applied in such a case, in contrast to combustion of coal, when the air supply arrangement has a decisive influence

    Immunologic aspects of the nephrotic syndrome

    Get PDF
    The nephrotic syndrome is a clinical entity characterized by proteinuria, hypoalbuminemia, edema and hyperlipidemia. All the features of this syndrome are ultimately related to increased permeability of the glomerular capillary to protein. A specific disease entity in its mildest form may result in mild proteinuria insufficient to cause hypoalbuminemia and the other physiological manifestations of the nephrotic syndrome; the same disease in another patient or at another time in the same patient may cause marked proteinuria and the nephrotic state. The principal difference between proteinuria alone and that associated with the nephrotic syndrome in any specific disease would therefore appear to be quantitative, although it is likely that other factors play a role

    A Global Perspective: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Get PDF
    The Prediction of the Worldwide Energy Resources (POWER) Project, initiated under the NASA Science Mission Directorate Applied Science Energy Management Program, synthesizes and analyzes data on a global scale that are invaluable to the renewable energy industries, especially to the solar and wind energy sectors. The POWER project derives its data primarily from NASA's World Climate Research Programme (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Version 2.9) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (Version 4). The latest development of the NASA POWER Project and its plans for the future are presented in this paper

    Comparison of aromatic hydrocarbon measurements made by PTR-MS, DOAS and GC-FID during the MCMA 2003 Field Experiment

    Get PDF
    A comparison of aromatic hydrocarbon measurements is reported for the CENICA supersite in the district of Iztapalapa during the Mexico City Metropolitan Area field experiment in April 2003 (MCMA 2003). Data from three different measurement methods were compared: a Proton Transfer Reaction Mass Spectrometer (PTR-MS), long path measurements using a UV Differential Optical Absorption Spectrometer (DOAS), and Gas Chromatography-Flame Ionization analysis (GC-FID) of canister samples. The principle focus was on the comparison between PTR-MS and DOAS data. Lab tests established that the PTR-MS and DOAS calibrations were consistent for a suite of aromatic compounds including benzene, toluene, p-xylene, ethylbenzene, 1,2,4-trimethylbenzene, phenol and styrene. The point sampling measurements by the PTR-MS and GC-FID showed good correlations (r=0.6), and were in reasonable agreement for toluene, C2-alkylbenzenes and C3-alkylbenzenes. The PTR-MS benzene data were consistently high, indicating interference from ethylbenzene fragmentation for the 145 Td drift field intensity used in the experiment. Correlations between the open-path data measured at 16-m height over a 860-m path length (retroreflector in 430 m distance), and the point measurements collected at 37-m sampling height were best for benzene (r=0.61), and reasonably good for toluene, C2-alkylbenzenes, naphthalene, styrene, cresols and phenol (r>0.5). There was good agreement between DOAS and PTR-MS measurements of benzene after correction for the PTR-MS ethylbenzene interference. Mixing ratios measured by DOAS were on average a factor of 1.7 times greater than the PTR-MS data for toluene, C2-alkylbenzenes, naphthalene and styrene. The level of agreement for the toluene data displayed a modest dependence on wind direction, establishing that spatial gradients – horizontal, vertical, or both – in toluene mixing ratios were significant, and up to a factor of 2 despite the fact that all measurements were conducted above roof level. Our analysis highlights a potential problem in defining a VOC sampling strategy that is meaningful for the comparison with photochemical transport models: meaningful measurements require a spatial fetch that is comparable to the grid cell size of models, which is typically a few 10 km2. Long-path DOAS measurements inherently average over a larger spatial scale than point measurements. The spatial representativeness can be further increased if observations are conducted outside the surface roughness sublayer, which might require measurements at altitudes as high as 10 s of metres above roof level.Alexander von Humboldt-Stiftung (Feodor Lynen fellowship)Henry & Camille Dreyfus Foundation (Postdoctral Fellowship in Environmental Chemistry

    Eddy covariance flux measurements of pollutant gases in urban Mexico City

    Get PDF
    Eddy covariance (EC) flux measurements of the atmosphere/surface exchange of gases over an urban area are a direct way to improve and evaluate emissions inventories, and, in turn, to better understand urban atmospheric chemistry and the role that cities play in regional and global chemical cycles. As part of the MCMA-2003 study, we demonstrated the feasibility of using eddy covariance techniques to measure fluxes of selected volatile organic compounds (VOCs) and CO2 [CO subscript 2] from a residential district of Mexico City (Velasco et al., 2005a, b). During the MILAGRO/MCMA-2006 field campaign, a second flux measurement study was conducted in a different district of Mexico City to corroborate the 2003 flux measurements, to expand the number of species measured, and to obtain additional data for evaluation of the local emissions inventory. Fluxes of CO2 [CO subscript 2] and olefins were measured by the conventional EC technique using an open path CO2 [CO subscript 2] sensor and a Fast Isoprene Sensor calibrated with a propylene standard. In addition, fluxes of toluene, benzene, methanol and C2-benzenes [C subscript 2 - benzenes] were measured using a virtual disjunct EC method with a Proton Transfer Reaction Mass Spectrometer. The flux measurements were analyzed in terms of diurnal patterns and vehicular activity and were compared with the most recent gridded emissions inventory. In both studies, the results showed that the urban surface of Mexico City is a net source of CO2 [CO subscript 2] and VOCs with significant contributions from vehicular traffic. Evaporative emissions from commercial and other anthropogenic activities were significant sources of toluene and methanol. The data show that the emissions inventory is in reasonable agreement with measured olefin and CO2 [CO subscript 2] fluxes, while C2-benzenes [C subscript 2 - benzenes] and toluene emissions from evaporative sources are overestimated in the inventory. It appears that methanol emissions from mobile sources occur, but are not present in the mobile emissions inventory.National Science Foundation (U.S.) (Grant ATM-0528227)United States. Dept. of Energy (Award DE-FG02-05ER63980)Mexico. Comisión Ambiental MetropolitanaMolina Center for Energy and the Environmen

    Downscaling NASA Climatological Data to Produce Detailed Climate Zone Maps

    Get PDF
    The design of energy efficient sustainable buildings is heavily dependent on accurate long-term and near real-time local weather data. To varying degrees the current meteorological networks over the globe have been used to provide these data albeit often from sites far removed from the desired location. The national need is for access to weather and solar resource data accurate enough to use to develop preliminary building designs within a short proposal time limit, usually within 60 days. The NASA Prediction Of Worldwide Energy Resource (POWER) project was established by NASA to provide industry friendly access to globally distributed solar and meteorological data. As a result, the POWER web site (power.larc.nasa.gov) now provides global information on many renewable energy parameters and several buildings-related items but at a relatively coarse resolution. This paper describes a method of downscaling NASA atmospheric assimilation model results to higher resolution and maps those parameters to produce building climate zone maps using estimates of temperature and precipitation. The distribution of climate zones for North America with an emphasis on the Pacific Northwest for just one year shows very good correspondence to the currently defined distribution. The method has the potential to provide a consistent procedure for deriving climate zone information on a global basis that can be assessed for variability and updated more regularly

    Multiple, distinct intercontinental lineages but isolation of Australian populations in a cosmopolitan lichen-forming Fungal Taxon, Psora decipiens (Psoraceae, Ascomycota)

    Get PDF
    Multiple drivers shape the spatial distribution of species, including dispersal capacity, niche incumbency, climate variability, orographic barriers, and plate tectonics. However, biogeographic patterns of fungi commonly do not fit conventional expectations based on studies of animals and plants. Fungi, in general, are known to occur across exceedingly broad, intercontinental distributions, including some important components of biological soil crust communities (BSCs). However, molecular data often reveal unexpected biogeographic patterns in lichenized fungal species that are assumed to have cosmopolitan distributions. The lichen-forming fungal species Psora decipiens is found on all continents, except Antarctica and occurs in BSCs across diverse habitats, ranging from hot, arid deserts to alpine habitats. In order to better understand factors that shape population structure in cosmopolitan lichen-forming fungal species, we investigated biogeographic patterns in the cosmopolitan taxon P. decipiens, along with the closely related taxa P. crenata and P. saviczii. We generated a multi-locus sequence dataset based on a worldwide sampling of these taxa in order to reconstruct evolutionary relationships and explore phylogeographic patterns. Both P. crenata and P. decipiens were not recovered as monophyletic; and P. saviczii specimens were recovered as a monophyletic clade closely related to a number of lineages comprised of specimens representing P. decipiens. Striking phylogeographic patterns were observed for P. crenata, with populations from distinct geographic regions belonging to well-separated, monophyletic lineages. South African populations of P. crenata were further divided into well-supported sub-clades. While well-supported phylogenetic substructure was also observed for the nominal taxon P. decipiens, nearly all lineages were comprised of specimens collected from intercontinental populations. However, all Australian specimens representing P. decipiens were recovered within a single well-supported monophyletic clade consisting solely of Australian samples. Our study supports up to 10 candidate species-level lineages in P. decipiens, based on genealogical concordance and coalescent-based species delimitation analyses. Our results support the general pattern of the biogeographic isolation of lichen-forming fungal populations in Australia, even in cases where closely related congeners have documented intercontinental distributions. Our study has important implications for understanding factors influencing diversification and distributions of lichens associated with BSC.This research was funded, in part, by a start-up grant from BYU College of Life Sciences to SL; MarW’s and MatW’s work was done within the European Soil Crust Project SCIN (Büdel et al., 2014) funded by the ERA-Net BiodivERsA program, with the national funder The Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (FORMAS)

    Distribution, magnitudes, reactivities, ratios and diurnal patterns of volatile organic compounds in the Valley of Mexico during the MCMA 2002 and 2003 field campaigns

    No full text
    International audienceA wide array of volatile organic compound (VOC) measurements was conducted in the Valley of Mexico during the MCMA-2002 and 2003 field campaigns. Study sites included locations in the urban core, in a heavily industrial area and at boundary sites in rural landscapes. In addition, a novel mobile-laboratory-based conditional sampling method was used to collect samples dominated by fresh on-road vehicle exhaust to identify those VOCs whose ambient concentrations were primarily due to vehicle emissions. Five distinct analytical techniques were used: whole air canister samples with Gas Chromatography/Flame Ionization Detection (GC-FID), on-line chemical ionization using a Proton Transfer Reaction Mass Spectrometer (PTR-MS), continuous real-time detection of olefins using a Fast Olefin Sensor (FOS), and long path measurements using UV Differential Optical Absorption Spectrometers (DOAS). The simultaneous use of these techniques provided a wide range of individual VOC measurements with different spatial and temporal scales. The VOC data were analyzed to understand concentration and spatial distributions, diurnal patterns, origin and reactivity in the atmosphere of Mexico City. The VOC burden (in ppbC) was dominated by alkanes (60%), followed by aromatics (15%) and olefins (5%). The remaining 20% was a mix of alkynes, halogenated hydrocarbons, oxygenated species (esters, ethers, etc.) and other unidentified VOCs. However, in terms of ozone production, olefins were the most relevant hydrocarbons. Elevated levels of toxic hydrocarbons, such as 1,3-butadiene, benzene, toluene and xylenes were also observed. Results from these various analytical techniques showed that vehicle exhaust is the main source of VOCs in Mexico City and that diurnal patterns depend on vehicular traffic. Finally, examination of the VOC data in terms of lumped modeling VOC classes and its comparison to the VOC lumped emissions reported in other photochemical air quality modeling studies suggests that some, but not all, VOC classes are underestimated in the emissions inventory by factors of 1.1 to 3
    corecore