18,124 research outputs found

    A class of Lorentzian Kac-Moody algebras

    Full text link
    We consider a natural generalisation of the class of hyperbolic Kac-Moody algebras. We describe in detail the conditions under which these algebras are Lorentzian. We also construct their fundamental weights, and analyse whether they possess a real principal so(1,2) subalgebra. Our class of algebras include the Lorentzian Kac-Moody algebras that have recently been proposed as symmetries of M-theory and the closed bosonic string.Comment: 40 pages TeX, 5 eps-figure

    Generalised geometry, eleven dimensions and E11

    Full text link
    We construct the non-linear realisation of E11 and its first fundamental representation in eleven dimensions at low levels. The fields depend on the usual coordinates of space-time as well as two form and five form coordinates. We derive the terms in the dynamics that contain the three form and six form fields and show that when we restricted their field dependence to be only on the usual space-time we recover the correct self-duality relation. Should this result generalise to the gravity fields then the non-linear realisation is an extension of the maximal supergravity theory, as previously conjectured. We also comment on the connections between the different approaches to generalised geometry.Comment: 17 pages, Trivial typos corrected in version one and a substantial note added which gives the equation of motion relating the gravity field to its dua

    Duality Symmetries and G^{+++} Theories

    Full text link
    We show that the non-linear realisations of all the very extended algebras G^{+++}, except the B and C series which we do not consider, contain fields corresponding to all possible duality symmetries of the on-shell degrees of freedom of these theories. This result also holds for G_2^{+++} and we argue that the non-linear realisation of this algebra accounts precisely for the form fields present in the corresponding supersymmetric theory. We also find a simple necessary condition for the roots to belong to a G^{+++} algebra.Comment: 35 pages. v2: 2 appendices added, other minor corrections. v3: tables corrected, other minor changes, one appendix added, refs. added. Version published in Class. Quant. Gra

    The local symmetries of M-theory and their formulation in generalised geometry

    Full text link
    In the doubled field theory approach to string theory, the T-duality group is promoted to a manifest symmetry at the expense of replacing ordinary Riemannian geometry with generalised geometry on a doubled space. The local symmetries are then given by a generalised Lie derivative and its associated algebra. This paper constructs an analogous structure for M-theory. A crucial by-product of this is the derivation of the physical section condition for M-theory formulated in an extended space.Comment: 20 pages, v2: Author Name corrected, v3: typos correcte

    Generalised Space-time and Gauge Transformations

    Get PDF
    We consider the generalised space-time introduced by the author in 2003 in the context of the non-linear realisation of the semi-direct product of E11 and its first fundamental representation. For all the fields we propose gauge transformations which are compatible with the underlying E11 structure. A crucial role is played by the generalised vielbein that the generalised space-time possess. We work out the explicit form of the gauge transformations, at low levels, in four, five and eleven dimensions.Comment: 33 page

    Duality and the Legendre Transform

    Get PDF
    We define a weak-strong coupling transformation based on the Legendre transformation of the effective action. In the case of N\es 2 supersymmetric Yang-Mills theory, this coincides with the duality transform on the low energy effective action considered by Seiberg and Witten. This Legendre transform interpretation of duality generalizes directly to the full effective action, and in principle to other theories.Comment: 6 pages, LaTe

    Zero-Bias Anomalies in Narrow Tunnel Junctions in the Quantum Hall Regime

    Full text link
    We report on the study of cleaved-edge-overgrown line junctions with a serendipitously created narrow opening in an otherwise thin, precise line barrier. Two sets of zero-bias anomalies are observed with an enhanced conductance for filling factors ν>1\nu > 1 and a strongly suppressed conductance for ν<1\nu < 1. A transition between the two behaviors is found near ν1\nu \approx 1. The zero-bias anomaly (ZBA) line shapes find explanation in Luttinger liquid models of tunneling between quantum Hall edge states. The ZBA for ν<1\nu < 1 occurs from strong backscattering induced by suppression of quasiparticle tunneling between the edge channels for the n=0n = 0 Landau levels. The ZBA for ν>1\nu > 1 arises from weak tunneling of quasiparticles between the n=1n = 1 edge channels.Comment: version with edits for clarit

    Worldsheet Matter Superfields on Half-Shell

    Full text link
    In this paper we discuss some of the effects of using "unidexterous" worldsheet superfields, which satisfy worldsheet differential constraints and so are partly on-shell, i.e., on half-shell. Most notably, this results in a stratification of the field space that reminds of "brane-world" geometries. Linear dependence on such superfields provides a worldsheet generalization of the super-Zeeman effect. In turn, non-linear dependence yields additional left-right asymmetric dynamical constraints on the propagating fields, again in a stratified fashion.Comment: 15 pages, 2 figures; minor algebraic correction

    Measurements of quasi-particle tunneling in the nu = 5/2 fractional quantum Hall state

    Full text link
    Some models of the 5/2 fractional quantum Hall state predict that the quasi-particles, which carry the charge, have non-Abelian statistics: exchange of two quasi-particles changes the wave function more dramatically than just the usual change of phase factor. Such non-Abelian statistics would make the system less sensitive to decoherence, making it a candidate for implementation of topological quantum computation. We measure quasi-particle tunneling as a function of temperature and DC bias between counter-propagating edge states. Fits to theory give e*, the quasi-particle effective charge, close to the expected value of e/4 and g, the strength of the interaction between quasi-particles, close to 3/8. Fits corresponding to the various proposed wave functions, along with qualitative features of the data, strongly favor the Abelian 331 state

    Multiloop calculations in supersymmetric theories with the higher covariant derivative regularization

    Full text link
    Most calculations of quantum corrections in supersymmetric theories are made with the dimensional reduction, which is a modification of the dimensional regularization. However, it is well known that the dimensional reduction is not self-consistent. A consistent regularization, which does not break the supersymmetry, is the higher covariant derivative regularization. However, the integrals obtained with this regularization can not be usually calculated analytically. We discuss application of this regularization to the calculations in supersymmetric theories. In particular, it is demonstrated that integrals defining the beta-function are possibly integrals of total derivatives. This feature allows to explain the origin of the exact NSVZ beta-function, relating the beta-function with the anomalous dimensions of the matter superfields. However, integrals for the anomalous dimension should be calculated numerically.Comment: 8 pages, contribution to ACAT 2011 proceeding
    corecore