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1 Introduction

It has been proposed that the effective low energy theory of strings and branes possess a

very large Kac-Moody symmetry called E11 [1]. The E11 symmetry was encoded in the

form of a non-linear realisation. In this paper space-time was introduced by extending the

E11 algebra to include the space-time translation generator in an adhoc manner. However,

in 2003 it was proposed to take the non-linear of the semi-direct product of E11 with its

first fundamental representation l1, denoted by E11⊗s l1 [2]. We recall that the notion of a

semi-direct product is well known to physicists as the Poincaré group is just the semi-direct

product of the Lorentz group and the space-time translations which is similarly denoted

by SO(1, D − 1)⊗s TD where TD are the translation group in D dimensions. The theory

of the non-linear realisations of a group G with local subgroup H not only specifies the

field and space-time content of the theory but also provides a method to construct the

dynamics. For the non-linear realisation of E11 ⊗s l1 we find a theory with an infinite

number of fields associated with E11 and a generalised space-time associated with the first

fundamental representation l1 which is automatically equipped with a generalised vielbein

and corresponding generalised tangent space. Examples of non-linear realisations can be

found in [1, 3, 4] and a review of non-linear realisations, and the E11 programme, can be

found in the book of reference [5].

The fields and coordinates can be classified in terms of a level which takes integer

values. This has a technical definition in terms of the underlying E11 Kac-Moody algebra

which depends on the dimension. For the fields that arise from the non-linear realisation, in

– 1 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
0

less than eleven dimensions, this definition is equivalent to defining the level as the number

of down minus up space-time indices that they carry and it is the same for the coordinates

except that for convenience we also add plus one. In eleven dimensions it is the same

except that we divide the result by three. The low level fields are those of the maximal

supergravity theories and there is very good evidence for the presence of many of the fields

that are found at higher levels in an underlying theory of strings and branes, that is,

beyond the supergravity approximation. The lowest level elements in the l1 representation

are the usual space-time translations and so the lowest level coordinates are those of the

usual space-time. However, the physical meaning of the higher level coordinates is not well

understood.

The Dynkin diagram of E11 is given by

•
1

− •
2

− . . . − •
7

− •
8

− •
9

− •
10

|
• 11

The non-linear realisation of E11⊗s l1 leads to theories in dimensions eleven and less. They

emerge by taking different decompositions of E11 with respect to different subalgebras. In

particular if we delete node D in the above E11 Dynkin diagram and decompose the E11

algebra, and the l1 representation¡ in terms of the remaining AD−1⊗E11−D subalgebra [6–

9] we find the theory in D dimensions. It follows that the E11 ⊗s l1 non-linear realisation

in a given dimension is equivalent to that in any other dimension by simply redefining the

fields and coordinates as they occur in the different decompositions [7].

The E11 conjecture states that the non-linear realisation of E11 ⊗s l1 contains the

maximal supergravity theories. That is, if one suitably restricts the fields and coordinates

one finds the maximal supergravity theories. The maximal supergravity theories, by virtue

of the large amount of supersymmetry they possess, have been thought to encode all string

and brane effects at low energy. However, what the E11 conjecture implies is that the

maximal supergravity theories do not encode all effects, but these are to be found in the

non-linear realisation of E11 ⊗s l1. Put another way the conjecture is that the low energy

effective action of strings and branes possess an E11 symmetry and it is the non-linear

realisation of E11 ⊗s l1.

As we have mentioned the lowest level coordinates of the l1 representation are the

usual coordinates of space-time, xa. In eleven dimensions the l1 representation leads to the

coordinates [2, 13]

xa(0), xab(1), xa1...a5(2), xa1...a7,b(3), xa1...a8(3),

xb̂1b̂2b̂3,â1...â8
(4), x(ĉd̂),â1...â9

(4), xĉd̂,â1...â9
(4), xĉ,â1...â10 (4), . . . (1.1)

where the number in brackets gives the level. Indeed, reference [13] found the coordinates

up to and including level seven. The algebraic equations determining the generalised co-

ordinates in lower dimensions were given in reference [10] and the results applied to three

dimensions where the coordinates corresponding to the first two entries in the table below
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for three dimensions were found. In the l1 representation at the level beyond the usual

coordinates of space-time one finds coordinates which are scalars under the Lorentz group

but transform as the 10, 16, 27, 56 and 248 ⊕ 1 of SL(5), SO(5,5), E6. E7 and E8 for

d equal to seven, six, five, four and three dimensions respectively [10, 11]. It is straight-

forward to compute the generalised coordinates that are forms, that is, carry completely

anti-symmetrised space-time indices which the l1 contains. This result for the generators

of the l1 representation, appropriate to d dimensions, are given in table 1 [9–12].

The coordinates of the generalised space-time are in one to one correspondence with

the generators of the l1 representation and so they can be easily read off from table 1. One

sees in the first column the Lorentz scalar coordinates mentioned above. The generalised

tangent space structure that is inherited from the coordinates is readily apparent from the

table.

There is good evidence that the l1 representations also contains all the brane charges

and as a result the way the non-linear realisation is constructed automatically encodes a one

to one correspondence between the coordinates of the generalised space-time and the brane

charges [2, 10, 12, 13]. As such one can think of each coordinate as associated with a given

type of brane probe. Furthermore for every generator in the Borel subalgebra of E11 there

is at least one element in the l1 representation [13], and as a result for every field at low level

in the non-linear realisation one finds a corresponding coordinate. This correspondence is

apparent at low levels from table 1 and the fields at low levels given in references [8, 14];

see page 53 of the former reference for the table giving the En representations of all forms.

The papers [10, 12, 13] also discussed the appearance in the l1 representation of “exotic”

representation and so the appearance of “exotic” brane charges and their associated with

coordinates.

In fact there have been previous discussions which considered an extension of our nor-

mal space-time. In 1990 it was proposed [15–18] that the first quantised string should

move in an extended space-time that had in addition to the usual coordinates xa also the

coordinates ya. The motivation was to manifestly encode T duality; the above coordinates

belonging to the vector representation of O(D,D). Such an assumption was natural consid-

ering the way that the string on a torus develops an additional zero mode that describes its

ability to wind around the torus. This extension of space-time was also used in 1993 to give

a field theory which was manifestly T duality invariant [17, 18]. This involved formulating

a field theory that described the massless fields of the NS-NS sector of the superstring in

the extended space-time just mentioned.

The E11⊗s l1 non-linear realisation, introduced in 2003, has been computed in various

dimensions, at low levels, for the fields and generalised coordinates and in particular in-

cluding coordinates of the generalised space-time which are in addition to those of the usual

space-time. In 2007 all gauged maximal supergravities in five dimensions we constructed,

for the first time, by taking the fields to depend on some of the generalised coordinates [9].

In 2009 the papers [22, 23] computed the E11 ⊗s l1 non-linear realisation in four dimen-

sion keeping the 56 Lorentz scalar coordinates in addition to the usual four coordinates of

space-time, but only the fields at level zero, that is, the metric and the scalar fields.
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D G Z Za Za1a2 Za1...a3 Za1...a4 Za1...a5 Za1...a6 Za1...a7

8 SL(3)⊗ SL(2) (3,2) (3̄,1) (1,2) (3,1) (3̄,2) (1,3) (3,2) (6,1)

(8,1) (6,2) (18,1)

(1,1) (3,1)

(6,1)

(3,3)

7 SL(5) 10 5̄ 5 10 24 40 70 -

1 15 50 -

10 45 -

5 -

6 SO(5, 5) 16 10 16 45 144 320 - -

1 16 126 - -

120 - -

5 E6 27 27 78 351 1728 - - -

1 27 351 - - -

27 - - -

4 E7 56 133 912 8645 - - - -

1 56 1539 - - - -

133 - - - -

1 - - - -

3 E8 248 3875 147250 - - - - -

1 248 30380 - - - - -

1 3875 - - - - -

248 - - - - -

1 - - - - -

Table 1. The generators in the l1 representation in D dimensions.

More recently a more systematic construction of the E11 ⊗s l1 has been undertaken in

eleven dimensions [24] and four dimensions [25]. In the former paper the eleven-dimensional

equations of motion involving the fields at levels up to and including the dual graviton (level

3) and the generalised coordinates xa, xa1a2 and xa1...a5 were given. While in reference [25],

the four dimensional equations involving the scalars and vectors and the coordinates at lev-

els zero and one were given. It was found that once one specified the Lorentz, and in the

case of four dimensions also the SU(8), character of the equations they were unique. Fur-

thermore these equations when restricted to the usual space-time and fields did indeed agree

with those of maximal supergravity. However, the equations relating the usual graviton to

the dual graviton are the subject of a further study to be published [40].

Starting in 2009 significant number of papers were devoted to the construction of what

was called doubled field theory. This theory is essentially equivalent to the theory put

forward in the old work of references [15–18]; the equivalence was explained in reference [26]

where one can also find references to this more recent work. Doubled field theory, or
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more appropriately Siegel theory, described the massless fields of the NS-NS sector of the

superstring, and it can be viewed as the non-linear realisation of E11⊗s l1 in ten dimensions

at level zero [27]. The extension of Siegel theory to include the Ramond-Ramond sector

was first given in reference [28]; it was just the E11⊗s l1 non-linear realisation at level one.

The goal of the E11 programme is to find the symmetries of the effective action of

strings and branes and, as is often correctly stressed, it is more ambitious that proposals

to simply reformulate supergravity theories. However, one usually considers the E11 ⊗s l1
non-linear realisation at low levels and then one finds the usual fields of the supergravity

theories, but also the generalised coordinates mentioned above. As such, the references

given above on the E11 ⊗s l1 non-linear realisation contain specific proposals for the fields

and generalised space-time, equipped with a generalised vielbein and tangent spaces, as

well as the dynamics for the low level fields. More recently there have been a number

of papers on what has become known as “exceptional generalised geometry.” The starting

point for these papers are the generalised space-times and tangent spaces, given in previous

papers, of the E11 ⊗s l1 non-linear realisation. For example, references [29] and [30] take

generalised space-times which consists of the first two columns in table one in five and four

dimensions. While references [31–34] take the tangent spaces of the generalised space-times

of the E11⊗s l1 non-linear realisation, for example, it takes the eleven dimensional tangent

space to be that corresponding to the coordinates in equations (1.1) and in the notation

of the last paper in reference [31–34], in particular equation (2.16), it is given as

TM ⊕ Λ2T ? ⊕ Λ5T ?M ⊕ (T ?M ⊗ Λ7T ?M)

While the E11⊗s l1 non-linear realisation specifies the dynamics in these other approaches

the dynamics is hoped to emerge from a generalisation of Riemannian geometry to the

above extensions of the usual space-time, or tangent spaces, following the earlier work

of [19–21] and mathematical development of [35–37].

One puzzle that was apparent from the earliest paper [1] on E11 was that although

one finds the field of gravity, and gauge fields, there was no very obvious, or compelling,

way of introducing the well known local transformations that these field usually possess

into the theory. Although the non-linear realisation contains a local symmetry, which is

the tangent space group of the generalised space-time, its role is to gauge away the fields

in the group element that are associated with the negative roots; indeed at lowest level

it is just the local Lorentz group. As such this local symmetry is not a local symmetry

in the sense of diffeomorphisms or gauge transformations. In the original paper, follow-

ing the approach to gravity of reference [3], the simultaneous non-linear realisation with

the conformal group was taken and this did indeed restrict the constants that arise in

the construction of the dynamics in just such a way that the theory was invariant under

diffeomorphisms and gauge transformations [1]. Unfortunately there has not so far been

found a clear way to extend this method to the full E11 algebra. A different approach was

taken in references [22, 23] mentioned above; the undetermined coefficients that arise when

constructing the dynamics of the E11⊗s l1 non-linear realisation in four dimensions at low

levels were fixed by demanding that the theory be diffeomorphism and gauge invariant.
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It was observed in constructing the maximally supersymmetric gauged supergravities

in five dimensions [9] that the gauge transformations could be viewed as diffeomorphisms

of the generalised coordinates see equations (5.3.35)–(5.3.46). This suggests that one may

be able to formulate gauge transformations in a simple way in the E11 ⊗s l1 non-linear

realisation if one utilised the generalised space-time it contains. Indeed this is the case

and in this paper we give a formula that specifies the gauge transformations, including

diffeomorphisms, of all the fields in the non-linear realisation. This formula, given, for

example, in equation (3.13), is expressed in terms of the generalised vielbein which is

automatically encoded in the E11 ⊗s l1 non-linear realisation in a simple manner. As such

the formula makes essential use of not just the coordinates, found at levels zero and one,

that is, the usual coordinates of space-time and those that are Lorentz scalars (column one

of table one), but also the higher level coordinates. In particular the gauge transformation

of a field can be thought of as arising from the elements, or equivalently coordinates, that

are associated with that field in the l1 representation. The results agree with the gauge

transformations of the fields in the non-linear realisation that one would usually expect.

To give a simple example, the three form in eleven dimensions is associated in the l1
representation with the two form coordinate and this agrees with the expected two form

gauge symmetry of such a field.

In section two we explain how general coordinate transformations can be thought to

arise in the familiar theory of gravity when it is viewed as a non-linear realisation; this

will prove instructive for the case of interest in this paper. In section three we first review

the aspects of the E11 ⊗s l1 non-linear realisation that are required, and in particular the

way it leads to a generalised space-time and vielbein. We then discuss the compatibility of

the gauge transformations with the underlying E11 structure and finally give a formula for

the gauge transformations. Section four contains the detailed working out of these gauge

transformations in five, four and eleven dimensions for some fields of interest at low levels.

In section five we further develop the theory behind the gauge transformations and propose

explicit forms for the linearised and non-linear gauge transformations.

2 Diffeomorphisms in gravity viewed as a non-linear realisation

In this section we will show how to introduce diffeomorphisms in the context of the for-

mulation of gravity as a non-linear realisation of GL(D) ⊗s lSL(D)
1 where l

SL(D)
1 is the

D-dimensional translation group which is constructed from the first fundamental repre-

sentation of GL(D) [1, 3]. Although diffeomorphisms in gravity are extremely well known

this discussion will prove useful as it has a natural generalisation to introducing local

transformations in the non-linear realisation of E11 ⊗s l1.

To construct the non-linear realisation of GL(D) ⊗s lSL(D)
1 we start from the group

element g = ex
aPaeha

bKa
b which is subject to the transformations g → g0gh where g0 ∈

GL(D)⊗s lSL(D)
1 and h ∈ SO(1, D − 1), which are rigid and local transformations respec-

tively. The corresponding Cartan forms V are given by

V = g−1dg ≡ dxµ(eµ
aPa +Gµa

bKa
b) = dxµ((eh)µ

aPa + (e−1∂µe)a
bKa

b) (2.1)

– 6 –
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The field eµ
a can be interpreted as the vielbein as it transforms on its upper index by a local

Lorentz rotation and on its lower index by a change of coordinates. Equations of motion,

or an action, which are invariant under the above transformations of the GL(D)⊗s lSL(D)
1

non-linear realisation can readily be constructed but they are contain a few constants whose

values are not determined by this method.

We take as our starting point that the local symmetries can be thought of as elements

of the l
SL(D)
1 representation, that is, the translation generators Pa and so consider the

parameter ξa(x) which is a function of space-time. At the linearised level the variation

of field ha
b should be constructed from ξa(x) and derivatives of the coordinates, that is,

∂a = ∂
∂xa . The coordinates transform under GL(D) according to the l1 representation which

is easily computed from the transformation on the above group element and one finds that

they transform as δxa = −xcΛca. As such we take the gauge parameters to transform

in the same way, namely, δξa = −ξcΛca. Strictly speaking parameters do not transform,

but when taking a closure they inherit a transformation from the transformation of the

fields and this has an equivalent effect. The derivatives transform in the contragredient

representation which is readily found to be given by δ(∂a) = Λa
b∂b. At the linearised level

the local variation of ha
b should maintain the GL(D) character of this field and the only

candidate is

δha
b = ∂aξ

b (2.2)

To construct the non-linear local variation we consider the variation contained in the

object (e−1)a
µδeµ

b. As explained below in the next section in the context of the general

theory eµ
b can be thought of as a representation of GL(D) and as a result it follows that

(e−1)a
µδeµ

b belongs to the Lie algebra of GL(D). In fact, it only transforms under local

Lorentz transformations and so it must be equal to a quantity which transforms in the

same way. Such an equation, which agrees with equation (3.2) at the linearised level, is

given by

(e−1)a
µδeµ

b = (e−1)a
µ(∂µξ

b + ωµ,
b
cξ
c) ≡ (e−1)a

µDµξ
b (2.3)

where ξc ≡ ξτeτ c and ωµ,a
b which is the usual spin connection. The later is given in terms

of the above GL(D) Cartan forms by ωa, bc = −Gb,(ca) + Gc,(ba) + Ga,[bc]. We can regard

equation (2.3) as a covariantised version of equation (2.2).

The variation of equation (2.3) is nothing but a diffeomorphism and a local Lorentz

transformation, indeed one finds that

δeµ
a = ξτ∂τeµ

a + ∂µξ
τeτ

a + ξτωτ,
a
beµ

b (2.4)

In deriving this equation we have used the well known equation

∂µeν
a − ∂νeµa + ωµ,

a
beν − ωµ,abeνb = 0 (2.5)

which can also be used to solve for ωµ
a
b.

It will be instructive to evaluate the commutator of two of the transformations given in

equation (2.3). Removing the inverse vielbein factor common to both sides of the equation

– 7 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
0

we find that

[δξ1 , δξ2 ]eµ
a = Dµ(Dν(eτ

aξτ2 )ξν1 ) + δξ1ωµ,
a
bξ2

b − (1↔ 2)

= Dµ(eτ
aξτcomp) + Λcomp

a
beµ

b (2.6)

where ξτcomp = ξ1
ν∂νξ

τ
2 − ξ2

ν∂νξ
τ
1 , Λcomp

a
b = −3Rab,cdξ

c
1ξ
d
2 and the Riemann tensor is

given as usual, in matrix notation, by [Dµ, Dν ]V a = Rµν,
a
bV

b for any vector V b. We

recognise the result as the expected composite general coordinate transformation and a

local Lorentz rotation built out of the Riemann tensor. In deriving this result use was

made of the standard identity R[µν,|
λ
|ρ] = 0. One can verify that the commutator of a local

Lorentz transformation and the transformation of equation (2.3) vanishes.

3 Local transformations and non-linear realisations

In this section we show how to introduce local, or gauge, transformations into a non-

linear realisation which consists of a semi-direct product group, however, for the sake of

concreteness we will apply it to the non-linear realisation of E11 ⊗s l1 which is the one of

interest to us in this paper. This non-linear realisation is constructed from a group element

g ∈ E11 ⊗s l1 which can be written as

g = glgE (3.1)

In this equation gE is a group element of E11 and so can be written in the form gE = eA·R

where R are the generators of E11 and A are the fields in the non-realisation, while gl is

the group element formed from the generators of the l1 representation and so has the form

ez
ALA where zA are the coordinates and LA are the generators of the l1 representation.

The fields depend on the generalised space-time. The explicit form of these group elements

can be found in earlier papers on E11, for example in dimensions eleven [24], five [9] and

four [25].

The non-linear realisation is, by definition, invariant under the transformations

g → g0g, g0 ∈ E11 ⊗s l1, as well as g → gh, h ∈ Ic(E11) (3.2)

The group element g0 ∈ E11 is a rigid transformation, that is, it is a constant, while

h belongs to the Cartan involution subalgebra of E11, denoted Ic(E11) and it is a local

transformation, that is, it depends on the generalised space-time. The latter is the Kac-

Moody analogue of the maximal compact of subalgebra for finite dimensional semi-simple

Lie groups. As the generators in gl form a representation of E11 the above transformations

for g0 ∈ E11 can be written as

gl → g0glg
−1
0 , gE → g0gE and gE → gEh (3.3)

As a consequence the coordinates are inert under the local transformations but transform

under the rigid transformations as

zAlA → zA′lA = g0z
AlAg

−1
0 = zΠD(g−1

0 )Π
ALA (3.4)
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For the differential, and when written in matrix from, this transformation is given by dzT →
dzT ′ = dzTD(g−1

0 ). The derivative ∂Π ≡ ∂
∂zΠ in the generalised space-time transforms as

∂′Π = D(g0)Π
Λ∂Λ.

The l1 representation of E11 is, by definition, given by

U(k)(LA) ≡ k−1LAk = D(k)A
BLB, k ∈ E11 (3.5)

where D(k)A
B is the matrix representative. As a result we recognise the matrix D(g−1

0 )

that appears in equation (3.4) as just this representation, although the indices are labelled

according to the role which they will play later in the physical theory that emerges from

the non-linear realisation.

The dynamics of the non-linear realisation is usually constructed from the Cartan

forms V = g−1dg. These are inert under the above rigid g0 ∈ E11 transformations, but

transform under the local transformations as

V → h−1Vh+ h−1dh (3.6)

Hence if we use the Cartan forms as building blocks, the problem of finding field equations

which are invariant under the transformations of equation (3.2) reduces to finding those

that is invariant under the local h transformations of the subalgebra Ic(E11).

Since the Cartan forms belong to the Lie algebra of E11 ⊗s l1 they can be written as

V = VE + Vl, where VE = g−1
E dgE ≡ dzΠGΠ,αR

α, (3.7)

where the indices α, β, . . . label the generators of E11, and

Vl = g−1
E (g−1

l dgl)gE = g−1
E dz · lgE ≡ dzΠEΠ

AlA (3.8)

The first part VE belongs to the Lie algebra of E11 and it is just the Cartan form for E11

while Vl is a sum of generators in the l1 representation. We have used the indices α, β, . . .

as we have run out of index sets to use, and we will use the labels α, β, . . . for the adjoint

representations of En, n = 4, 5, 6, 7, 8.

While both VE and Vl are invariant under rigid transformations and under local trans-

formations of equation (3.6) they change as

VE → h−1VEh+ h−1dh and Vl → h−1Vlh (3.9)

Examining equation (3.8) we recognise EΠ
A as the representation matrix D(gE)Π

A, and

so EΠ
A = D(gE)Π

A.

Although the Cartan form is inert under rigid transformations, the rigid transforma-

tions do act on the coordinate differentials contained in the Cartan form and this action

induces a corresponding transformation on the lower index of EΠ
A. On the other hand,

under a local Ic(E11) transformation the generalised vielbein EΠ
A transforms on its upper

index as governed by equation (3.8) which, using equation (3.5), we also recognise as the

representation matrix for the subgroup Ic(E11). We may summarise these two results as

EΠ
A′ = D(g0)Π

ΛEΛ
BD(h)B

A or (E−1)A
Π′ = D(h−1)A

B(E−1)B
ΛD(g−1

0 )Λ
Π (3.10)
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Thus EΠ
A transforms under a local Ic(E11) transformation on its A index and by

the inverse of the coordinate transformation on its Π index. These transformations are

consistent with the interpretation of EΠ
A as a generalised vielbein of the generalised space-

time and associated with the generalised tangent space with the tangent group Ic(E11).

We have already discussed the Ic(E11) local symmetries which are a well known part

of a non-linear realisation and are responsible for gauging away fields in the group element

that are associated with the negative root generators. We will now introduce new local

symmetries that will turn out to contain the diffeomorphisms of the usual space-time

as well as the gauge transformations of the fields. The later include the usual gauge

transformations of the form fields as well as the more complicated gauge transformations

of fields with more complicated index structures. We take the point of view that these

local transformations are associated with the l1 representation and as such we can denote

their parameters by ΛΠ and we take these to depend on the generalised space-time. The

quantities ΛΠ can be thought of as belonging to the l1 representation and so transform

under rigid E11 transformations in the same way as the generalised coordinates, as given

in equation (3.4).

The linearised gauge transformations of the fields of the non-linear realisation will

involve the above gauge parameters ΛΠ and the generalised space-time derivatives, ∂Π

whose rigid E11 transformations were given above. The l1 representation is in fact a

lowest weight state with lowest weight state P1 where Pa, a = 1, . . . , D are the space-time

translation generators in D dimensions. The l̄1 representation is, by definition, a highest

weight representation with highest weight state PD. The generalised space-time derivatives

transform in the l̄1 representations.

At the linearised level the local, or gauge, transformations must be given in terms of

the gauge parameters ΛΠ and the coordinate derivatives of the generalised space-time ∂Π

in such a way that they give an object that transforms in the adjoint representations, that

is, in the same way as do the fields under rigid E11 transformations. This is possible as

the tensor product of the l1 and the l̄1 representations does indeed contain the adjoint

representation of E11. As a result we can write the linearised gauge variations as

δAα = NαΣ
Ξ∂ΞΛΣ, or δAΠ

Λ = NΠ
Λ

Σ
Ξ∂ΞΛΣ (3.11)

In the second version of this equation we have used the fact that the generators of E11

can be expressed in terms of the matrices of the l1 representation and so we can label the

fields contained in the non-linear realisation as AΠ
Λ. In this equation NαΣ

Ξ, or equivalently

NΠ
Λ

Σ
Ξ, are constants that convert the l1⊗ l̄1 representation into the adjoint representation

of E11. We note that at the linearised level there is no distinction between world and tangent

indices. While it is true that the fields of the non-linear realisation transform under the

adjoint representation of E11 at the linearised level, it is usual to use the local subalgebra

to gauge away the fields associated with the negative roots and once this has been done one

requires a compensating transformation in order to preserve the form of the group element

when acted on by rigid E11 transformations. This compensation complicates the effect

of these transformations and should be taken into account when computing the constants

NΠ
Λ

Σ
Ξ.
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We now construct the full non-linear local transformations and we start by considering

the object

(E−1)A
ΠδEΠ

B (3.12)

The generalised vielbein EΠ
A contains all the fields of the non-linear realisation and so

specifying the variation of this quantity is equivalent to specifying what are the variations

of the fields contained in the E11 ⊗s l1 non-linear realisation. As explained above the gen-

eralised vielbein can be thought of as the matrix representation of E11 in the l1 realisation

and as a result the above quantity belongs to the Lie algebra of E11. The expression to

which the quantity in equation (3.12) is equal is to be constructed from the generalised

covariant derivatives and the gauge parameters, which also belong to the l1 representa-

tion. Taking this into account, we propose that the non-linear gauge transformations are

given by

(E−1)A
ΠδEΠ

B = NA
B
C
DED

ΠDΠΛC (3.13)

where DΠ = ∂Π + ΩΠ and ΩΠ is a connection which transforms as V does in equation

(3.6). We will discuss the connection further in this section 5. The ΛA in equation (3.13)

transforms under local Ic(E11) transformations as does the upper index on the generalised

vielbein EΠ
A, while (E−1)D

ΠDΠ transforms as the lower index of (E−1)D
Π. One can define

a parameter with a world index in the usual way by ΛA ≡ ΛΠEΠ
A. The constants NA

B
C
D

ensure that the left and right-hand sides of the equation transform in the same way; the

objects that appear directly are inert under the E11 rigid transformations, we must demand

that the constants transform under Ic(E11) transformations as follows

D(h−1)A
ED(h)F

BNE
F
C
D = NA

B
E
FD(h)F

DD(h−1)C
E (3.14)

The construction of these constants is just a question of group theory. We can think

of equation (3.13) as a covariantised version of equation (3.11); indeed given an allowed

contribution at the linearised level object one can use the generalised vielbein to convert

the indices to tangent indices and obtain a contribution to the non-linear result. However,

we note that the condition of equation (3.14) involves the subgroup Ic(E11) of E11 and

this may allow more solutions. This consideration is the same as that which occurs when

constructing the equations of motion using the Cartan forms which transform under Ic(E11)

and in this case one does find that the additional possibilities are essential. The constants

NA
B
C
D are straight forward to computed and this is carried out at low levels in four, five

and six dimensions in section four.

Many of the terms in equation (3.13) are not of a familiar type as they contain deriva-

tives with respect to the higher level coordinates of the generalised space-time. However,

by taking the index A = a, where a is the index for the usual tangent space, we will find

the more familiar gauge transformations. The way the expected gauge transformations

arise will become apparent from the worked examples in four, five and eleven dimensions

given in section four.

It is important to realise that the above formula for the local transformations makes

use of the coordinates of generalised space-time beyond the usual coordinates of space-time

and the additional Lorentz invariant coordinates, found in the first column of table one.

– 11 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
0

Indeed, to get even the gauge symmetries that we are familiar with in supergravity theories

one must use the coordinates of the generalised space-time at higher levels. For example,

in eleven dimensions the three form and six form are associated with the two form and

five form coordinates of the generalised space-time and their two form and five form gauge

transformations arise from these coordinates. Furthermore, the dual graviton ĥa1...a8,b is

expected to have two gauge transformations Λa1...a8 and Λa1...a7,b which are associated with

the coordinates with the same index structure that occur in the l1 representation at level

three. At the next level, we find the field Aa1...a9,b1b2b3 which should have the gauge trans-

formations Λa1...a8,b1b2b3 and Λa1...a9,b1b2 and there are indeed associated coordinates in the

l1 representation with these indices, see equation (4.44). In fact this is true quite generally

as it was shown in reference [13] that if we decompose E11 and the l1 representation into

representations of SL(11) and one finds a certain representation of SL(11) in E11, then one

finds in the l1 representations, at the same level, all the SL(11) representations which are

found from the one in E11 by deleting one index in all possible ways.

4 Gauge transformations in four, five and eleven dimensions.

In this section we find the explicit form of equation (3.13) in four, five and eleven dimensions

at low levels. Using this result we illustrate the formula by finding the local transformation

of the vector in the four five dimensions and the three form in eleven dimensions.

4.1 Gauge transformations in five dimensions

We now illustrate the discussion of section three for the E11 ⊗s l1 non-linear realisation

in five dimensions. Deleting node five in the E11 Dynkin diagram we find the subalgebra

GL(5) ⊗ E6 and decomposing E11 with respect to this algebra we find the positive level

the generators

Ka
b(1, 0), Rα(78, 0), RaM (27, 1), Ra1a2

M (27, 2), Ra1a2a3α(78, 3) . . . (4.1)

The first number in the bracket is the dimension of the E6 representations to which they

belong and the second number is their level. The algebra the generators satisfy can be found

in references [9, 38] and the additional commutators in appendix A. The corresponding

fields in the non-linear realisation are

ha
b, Aα, AaM , A

M
a1a2

, Aa1a2a3α, . . . (4.2)

Decomposing the l1 representation with respect to GL(5)⊗E6 subalgebra we find that

the lowest level members are given by [9]

Pa(1, 0), ZN (27, 1), ZaN (27, 2), Za1a2α(78, 3), Za1a2(1, 3), . . . (4.3)

and the corresponding coordinates by

xa, xN , x
N
a , xa1a2α, xa1a2 , . . . (4.4)
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We denote the generalised space-time derivatives with respect to these coordinates as

∂a(0), ∂N (−1), ∂aN (−2), ∂a1a2α(−3), ∂a1a2(−3), . . . (4.5)

where the bracket contains the levels of the derivatives. The definitions of the derivatives

is as expected, for example, ∂a = ∂
∂xa , ∂

N = ∂
∂xN

.

The Cartan forms that arise in the non-linear realisation E11 ⊗s l1 in five dimensions

can be found in [9]. This paper derived all the gauged supergravities in five dimensions by

taking the fields to have a non-trivial dependence on the generalised space-time.

Following the general procedure given in section three we introduce the gauge param-

eters corresponding to the members of the l1 representation:

ξa(0),ΛN (1),ΛNa (2),Λa1a2α(3),Λa1a2(3), . . . (4.6)

We now write down the linearised gauge transformations of equation (3.11) in five dimen-

sions at low levels. To do this we write down all possible terms on the right-hand side that

preserve the level and SL(5)⊗ E6 character of the equation:

δha
b = ∂aξ

b +
1

3
δba∂

MΛM − ∂aNΛb
N +

2

3
δba∂

c
NΛc

N + . . . , (4.7)

δAaM = ∂aΛM − 10dMPQ∂
QΛQa + e1(Dβ)M

N∂bNΛbaβ + . . . (4.8)

δφα = −6(Dα)M
R∂MΛR + 6(Dα)M

R∂bRΛb
M + . . .

δAa1a2
M = ∂[a1

ΛMa2] + e2(Dβ)N
M∂NΛba1a2β + . . . (4.9)

To be pedagogical we should have placed an arbitrary coefficient in front of each term and

determined the value of this coefficient later, however, in the interest of brevity we have

put in the values of the coefficients that we will find below leaving the two constants e1 and

e2 so far undetermined. The symbol dMPQ is the totally symmetric E6 invariant tensor

and (Dβ)N
M the representations matrix of the 27 representation, see appendix A. Further

properties of these tensors can be found in references [9] and [38].

As explained above, the linearised variations should belong to the adjoint representa-

tion of E11, generalising the SL(5)⊗ E6 character of the equation to an E11 character. It

is most useful to compute the rigid E11 transformations which follow from taking the rigid

group element g0 = ea
aNRaN . We note this is a negative root generator and so this does

not preserve the form of the group element usually used in the non-linear realisation. The

gauge parameters transform like the generalised coordinates which, evaluating equation

(3.4), we find to transform as

δxa = aaNxN , δxN = −10dRSNa
bRxSb δxNa = −12xbaαa

bR(Dα)R
N , . . . (4.10)

As a result the generalised space-time derivatives transform as

δ(∂a) = 0, δ(∂N ) = −abN∂b, δ(∂AN ) = 10aaRdRNP∂
P , . . . (4.11)
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The linearised transformations of the fields arising from taking the rigid transformation

g0 = eaaNR
aN

are as follows

δhb
a = aaNAbN +

1

3
δab a

cNAcN , δφα = 6(Dα)P
QaaPAaQ,

δAaN = 20dRSNa
bRAba

S + (acNhc
b + 2abM + abPφα(Dα)P

M )δM,Nδa,b,

δAa1a2
N = 18abRAba1a2α(Dα)R

N + . . . (4.12)

The last term in brackets in δAaN arises from the compensation of the group element and

this explains the unusual index positions.

Transforming the right-hand side of equation (4.7)–(4.9), using equations (4.10) and

(4.11), and comparing this with the transformation of the left-hand side, that is, the

transformations of the fields of equation (4.12), we find the constants as they are given

in equations (4.7)–(4.9). It is straightforward to compute the remaining constants by

including higher level terms.

We now compute the gauge transformation of the fields using equation (3.13) for

which we require the generalised vielbein. This is easily found using equation (3.8) and it

is given by

E = (dete)−
1
2

eµa −eµcAµN −eµc(2AcbN + dRSNAµSAcR)

0 NṀ
N NṀ

Pd
RPNAbR

0 0 (e−1)b
µ(N−1)NṀ

 (4.13)

where NṀ
N is the vielbein on the scalar coset space which is computed in the same way

as equation (3.8) but using just the scalar fields. The dot placed over an index means that

it is a world rather than a tangent index.

Taking A = a and B = M we find that the left-hand side of equation (3.13) is given by

Ea
ΠδEΠM = −(e−1)a

µδAµM +AaṄδN
Ṅ
M = −(e−1)a

µδAµṄN
Ṅ
M (4.14)

We observe that it contains the variation of the vector field with world indices. Taking into

account equation (4.8) we find that the right-hand side of equation (3.13), for the indices

we are considering, takes the form

(E−1)a
ΠDΠΛM − 10dMPQ(E−1)PΠDΠΛa

Q + . . . (4.15)

Using the expression for the generalised vielbein of equation (4.13) we find that the gauge

variation of the vector field is given by

δAµṀ = D̃µΛṀ +AµṖ D̃
ṖΛṀ − 10dMPQ(N−1)P Ṫ (D̃ṪΛµ

Q − dRSQΩṪ
,µRΛS) + . . . (4.16)

where D̃Π is the covariant derivative with a connection that includes on the level zero

contributions and ΩṪ
,µR = ∂ṪAµR.

The equations of motion of the E11⊗s l1 non-linear realisation can be computed follow-

ing the same techniques that were used to find them in eleven [24] and four dimensions [25].

This technique used the Cartan forms and their local transformations, but we now compute
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the first term in the equation of motion of the vector equation using the rigid transforma-

tions computed in this paper. Under the transformations of equation (4.12) we find that

only the combination

∂[a1
Aa2]N + 10dNRS∂

RAa1a2
S (4.17)

leads to an object with is totally anti-symmetric in three indices which is given by

− 30dRSNa
bR∂[bAa1a2]

S (4.18)

We require an object antisymmetric in three indices as only in this case can we find a term

that possess the same Lorentz character as the other variations which can be collected to

give the equation of motion of the scalars.

We note that the first terms in the vector equation of motion, given in equation (4.17)

are indeed invariant under the gauge transformation of equations (4.7)–(4.9) up to the

required level. This leads one to hope that the full equations are invariant under the full

non-linear gauge transformations.

4.2 Gauge transformations in four dimensions

We now consider the four dimensional theory. Deleting node four in the above E11 Dynkin

diagram we find the subalgebra GL(4)⊗E7 and decomposing E11, and the l1 representation,

into this subalgebra we find the four dimensional theory. In this decomposition the positive

level generators of E11 are given by [25]

Ka
b(15, 1, 0), Rα(1, 133, 0); RaN (4, 56, 1); Ra1a2α(6, 133, 2),

K̂ab(10, 1, 2); Ra1a2a3λ(4, 912, 3), Ra1a2,bN (20, 56, 3); . . . (4.19)

where the first two figures in the brackets indicate the dimensions of the SL(4) and E7

representations respectively, while the last figure is the level. In fact it is simpler to also

decompose E7 into its SL(8) subalgebra and work in terms of representations of GL(4)⊗
SL(8). One can then reconstruct the representations of E7 when required. In terms of this

decomposition the generators of E11 are given by [25]

Ka
b(15, 1, 0), RIJ(1, 63, 0), RI1...I4(1, 70, 0), RaI1I2(4, 28, 1), RaI1I2(4, 28, 1),

Ra1a2I
J(6, 63, 2), Ra1a2I1...I4(6, 70, 2), K̂a1a2(10, 1, 2),

Ra1a2,b
I1I2(20, 28, 3), Ra1a2,bI1I2(20, 28, 3), Ra1a2a3

I1I2I3
J(4, 420, 3),

Ra1a2a3I1I2I3
J (4, 420, 3), Ra1a2a3

(I1I2)(4, 36, 3), Ra1a2a3 (I1I2)(4, 36, 3), . . . (4.20)

The second entry in the brackets denotes the SL(8) representation of the fields. The

corresponding fields in the E11⊗s l1 non-linear realisation are in one to one correspondence

with these generators and so are given by

ha
b, φIJ , φI1...I4 , AaI1I2 , Aa

I1I2 , Aa1a2
I
J , Aa1a2I1...I4 , ĥa1a2 ,

Aa1a2,b
I1I2 , Aa1a2,bI1I2 , Aa1a2a3

I1I2I3
J ,

Aa1a2a3I1I2I3
J , Aa1a2a3

(I1I2), Aa1a2a3 (I1I2), . . . (4.21)
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We must also decompose the l1 representation into representations of GL(4) ⊗ SL(8) to

find [25]

Pa(4, 1, 0), ZI1I2(1, 28, 1), , ZI1I2(1, 28, 1), ZaIJ(4, 63, 2), ZaI1...I4(4, 70, 2), Za(4, 1, 2),

Za1,a2
I1I2(16, 28, 3), Za1,a2I1I2(16, 28, 3), Za1a2

I1I2I3
J(6, 420, 3), Za1a2I1I2I3

J (6, 420, 3),

Za1a2
(I1I2)(6, 36, 3), Za1a2 (I1I2)(6, 36, 3), . . . . . . (4.22)

The generators at level three belong to the 56 = 28 + 28 and 912 = 420 + 36 + 420 + 36-

dimensional representations of E7; the decomposition is into representations of SL(8). The

generator Za1,a2
I1I2 has no particular symmetry on its a1 and a2 indices.

In the non-linear realisation these lead to the generalised space-time of the four di-

mensional theory which has the coordinates [25]

xa, xI1I2 , x
I1I2 , xa

I
J , xa

I1...I4 , x̂a,

xa1,a2
I1I2 , xa1,a2I1I2 , xa1,a2

I1I2I3
J , xa1,a2I1I2I3

J ,

xa1,a2
(I1I2), xa1,a2 (I1I2), . . . (4.23)

We denote the generalised derivatives by

∂a(0), ∂I1I2(−1), ∂I1I2(−1), ∂aI
J(−2), ∂aI1...I4(−2), ∂̂a(−2), . . . (4.24)

where the number in brackets is the level. They are given in terms of the coordinates in

the way expected, for example, ∂a = ∂
∂xa , ∂

I1I2 = ∂
∂xI1I2

.

The non-linear realisation of E11 ⊗s l1 was constructed at low levels in reference [25]

for the above fields up to the dual graviton and the coordinates at level zero and one. The

equations for the scalars and vectors when truncated to the usual fields and coordinates

are indeed those of the four dimensional maximal supergravity theory. Furthermore, once

one adopts the expected GL(4) ⊗ E7 character of the equation then the rigid symmetries

of the non-linear realisation appear to determine these equations uniquely.

According to the above discussion of section three we should introduce local, or gauge,

symmetries with parameters that are in one to one correspondence with the l1 representa-

tion and as a result are in one to one correspondence with the coordinates of equation (4.23).

As a result the parameters are

ξa, ΛI1I2 , ΛI1I2 , Λa
I
J , Λa

I1...I4 , ξ̂a,

Λa1,a2
I1I2 , Λa1,a2I1I2 , Λa1,a2

I1I2I3
J , Λa1,a2I1I2I3

J ,

Λa1,a2
(I1I2), Λa1,a2 (I1I2), . . . . . . (4.25)

We now write down the linearised gauge transformations, that is, equation (3.11) in four

dimensions, at low levels. These should preserve the level and SL(5)⊗ SL(8) character of
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the equations and so one finds that

δha
b = ∂aξ

b +
1

2
δba∂I1I2ΛI1I2 +

1

2
δba∂

I1I2ΛI1I2 + . . .

δφI1...I4 = −6∂[I1I2ΛI3I4] −
1

4
εI1...I4K1...K4∂

K1K2ΛK3K4 + . . .

δφIJ = 2∂ILΛLJ − 2∂JLΛLI − 1

4
δIJ(∂KLΛLK − 2∂KLΛLK) + . . .

δAaI1I2 = −∂aΛI1I2 + 6∂J1J2ΛaJ1J2I1I2 − 4∂[I1|LΛa
L
|I2] −

1

2
∂I1I2 ξ̂a + . . .

δAI1I2a = −∂aΛI1I2 −
1

4
εI1I2K1K2J1...J4∂K1K2ΛaJ1...J4 + 4∂[I1|LΛa

|I2]
L +

1

2
∂I1I2 ξ̂a + . . .

δAa1a2
J
K = 4∂[a1

Λa2]
J
K + . . . , δĥab = −2∂(aξ̂b) + . . .

δAa1a2I1...I4 = 12∂[a1
Λa2]I1...I4 + . . . (4.26)

We should have written the equations with an arbitrary constants in front of each term,

but we have taken the liberty of inserting the numerical values that result from demanding

that the left and right-hand sides of the equation transform as the adjoint representation

of E11. This is the calculation we now carry out by first computing the required rigid E11

transformations of the objects that appear in the equation at the linearised level.

The rigid E11 transformation generated by g0 = ea
aI1I2RaI1I2+aaI1I2Ra

I1I2 , using equa-

tion (3.4), leads to the transformations

δxa = 2aaI1I2xI1I2 − 2aaI1I2x
I1I2 , δxI1I2 = aaI1I2 x̂a − 12aaJ1J2xaJ1J2I1I2 − 8aaK[I1|xa

K
|I2]

δxI1I2 = aaI1I2 x̂a −
1

2
aaJ1J2xaJ3...J6ε

J1...J6I1I2 − 8aaK[I1|xa
|I2]

K , . . . (4.27)

The corresponding transformations of the generalised derivatives are given by

δ(∂a) = 0, δ(∂I1I2) = −2aaI1I2∂a, δ(∂I1I2) = 2aaI1I2∂a,

δ(∂̂a) = −aa[I1I2∂
I3I4] − aa[I1I2∂I3I4],

δ(∂aI1...I4) = 12aa[I1I2∂I3I4] +
1

2
εI1...I4J1J2K1K2aaJ1J2∂K1K2 ,

δ(∂aK
J) = 8aaKL∂

LJ + 8aaJL∂LK , . . . (4.28)

We also need the variations of the fields at the linearised level. These follow from

equation (3.3) and, after some work which includes compensating the group element using
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a local Ic(E11) transformation, one finds the result

δha
b = 2Aa

I1I2abI1I2 − 2AaI1I2a
bI1I2 − δbaAcI1I2acI1I2 + δbaAcI1I2a

cI1I2

δφI1...I4 = 12aa[I1I2|Aa|I3I4] −
1

2
εI1...I4J1...J4a

aJ1J2Aa
J3J4

δφJK = −4Aa
LJaaLK − 4AaLKa

aLJ

δAa
I1I2 = −4abk[I1|Aba

|I2]
K −

1

12
εI1I2J1...J4K1K2abK1K2AabJ1...J4 + abI1I2 ĥab

+ (abJ1J2 ĥb
c + 2acJ1J2 − acK1K2φK1K2J1J2 + 2acLJ2φ

L
J1)ηcaδ

I1I2,J1J2 + . . .

δAaI1I2 = +4abJ [I1|Aba
J
I2] − 2abK1K2AbaK1K2I1I2 + abI1I2 ĥba

+

(
abJ1J2 ĥb

c+2acJ1J2− 1

4!
εK1...K4L1L2J1J2φcL1L2

+2φJ1
La

cLJ2

)
ηcaδI1I2,J1J2 +. . .

(4.29)

The last terms in δAaI1I2 and δAa
I1I2 arise from the need, mentioned above, to bring the

group element into the required form using a local Ic(E11) transformation.

To check that right-hand side of equation (4.26) belongs to the adjoint representations

of E11 we use equations (4.27) and (4.28), which give the rigid transformations of the

gauge parameters and generalised derivatives respectively, to find the transformations of

the right-hand side of equation (4.26). We then compare this with rigid transformations of

the fields, given in equation (4.29), and so find the coefficients as given in equation (4.26).

To find the variations of the fields we need the generalised vielbein which is straight-

forward to calculate using its definition in equation (3.8); one finds that [25]

E = (dete)−
1
2

eµa −eµcAcJ1J2 −eµcAcJ1J2

0 N I1I2
J1J2 N I1I2J1J2

0 NI1I2J1J2 NI1I2J1J2

 (4.30)

The matrix N is the vielbein in the scalar sector, which is given by g−1
φ (dxI1I2Z

I1I2 +

dxI1I2ZI1I2)gφ ≡ dx · N · l where gφ is the group element for the non-linear realisation of

E7 with local subgroup SU(8); it just depends on the scalar fields.

We now compute the variation of equation (3.13) for the case the A = a and B = I1I2.

The left hand-side is given by

(E−1)a
ΠδEΠI1I2 = −(e−1)a

µδAµJ̇1J̇2
N J̇1J̇2

I1I2 (4.31)

where İ , J̇ , . . . are curved indices. Evaluating the formula we find several terms, but the

net effect is that the formula contains the variation of Aµİ1İ2 , that is the vector with world

indices. Examining equation (4.26) we find that the right-hand side of equation (3.13), for

the indices above, takes the from

− (E−1)a
ΠDΠΛI1I2 + 6(E−1)J1J2ΠDΠΛaJ1J2I1I2 − 4(E−1)[I1|L

ΠDΠΛa
L
|I2]

− 1

2
(E−1)I1I2

ΠDΠξ̂a + . . . (4.32)
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Equating equations (4.32) and (4.33), multiplying by the inverse vielbein in space-time

and the vielbein in the 56-dimensional internal space, we find that

δAµİ1İ2 = −{D̃µΛİ1İ2 +Aµ
K̇1K̇2D̃K̇1K̇2

Λİ1İ2 +AµK̇1K̇2
D̃K̇1K̇2Λİ1İ2}

+ 6

{
D̃J̇1J̇2ΛµJ̇1J̇2İ1İ2

−ΩJ̇1J̇2
,µ[J̇1J̇2

Λİ1İ2]+
1

4!
εİ1İ2J̇1J̇2K̇1K̇2L̇1L̇2

ΩJ̇1J̇2
,µ
K̇1K̇2ΛL̇1L̇2

}
− 4{D̃[İ1|L̇Λµ

L̇
|İ2] + Ω[İ1|L̇,µK̇|İ2]Λ

K̇L̇ + Ω[İ1|L̇,µ
L̇K̇|ΛK̇|İ2]}

− 1

2
{−Ωİ1İ2 ,µ

K̇1K̇2ΛK̇1K̇2
+ Ωİ1İ2 ,µK̇1K̇2

ΛK̇1K̇2}+ . . . (4.33)

where D̃Π is the covariant derivative with a connection that contains only the level zero

parts and Ωİ1İ2,µJ̇1J̇2
= ∂İ1İ2AµJ̇1J̇2

. We note that although equation (3.13) is simple, its

explicit form for a given field can appear complicated.

As we have mentioned, the non-linear realisation of E11 ⊗s l1 has been constructed

at low levels, at least for the vector and scalar fields [25]. These equations include terms

that have the generalised space-time derivatives ∂I1I2 and ∂I1I2 and we refer the reader to

this reference for the details. However, it is instructive to reproduce part of the vector

equation of motion using the rigid transformations given in this paper. The vector equa-

tion carries two anti-symmetrised Lorentz indices and belongs to the 28 + 28 -dimensional

representations of SL(8). The lowest level terms in the 28 part of this equation are of the

form

Ea1a2I1I2 ≡ Fa1a2I1I2 ±
i

2
εa1a2b1b2Fb1b2I1I2 + . . . = 0 (4.34)

where

Fa1a2I1I2 ≡ ∂[a1
Aa2]I1I2 + d1∂

J1J2Aa1a2J1J2I1I2 + d2∂[I1|LAa1a2
L
|I2] + . . . (4.35)

and d1 and d2 are constants. The variation of the vector equation under the transformation

of equation (4.29) must give one of the other equations of motion and in particular the

scalar equation of motion. This is an equation that has a single Lorentz index and involves

the derivatives of the scalars and the epsilon symbol acting on the the dual scalar fields, for

example εab1b2b3∂b1Ab2b3J1J2I1I2 . However, this is only the case if we take the coefficients

d1 = −1
2 and d2 = 1 and then the variation is given by

δ(Fa1a2I1I2) = 3abJ1J2∂[bAa1a2]J1J2I1I2 + 6ab[I1|L∂[bAa1a2]
L
|I2] + . . . (4.36)

Taking into account the change of notation this agrees with the results of reference [25]

whose fully non-linear results were found using the more powerful method of working with

the Cartan forms and their local transformations.

It is straight forward to verify, at the linearised level and up to the level considered,

that the equation of motion for the vector of equation (4.35) is invariant under the gauge

transformation of equation (4.26) if we take the constants to have the values determined

by the symmetries of the E11 ⊗s l1 non-linear realisation.

We close this section by sketching the gauge variations of the fields at linearised level

when one includes the level three gauge parameters given in equation (4.25). The trans-

formations of the level two fields under the level three gauge parameters must involve the

– 19 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
0

level −1 generalised space-time derivatives and have the generic form

δAa1a2I1...I4 = . . .+ ∂[I1I2|Λ[a1,a2]|I3I4] + ∂[I1|JΛ[a1,a2]|I2I3I4]
J + . . .

+ εI1...I4K1...K4(∂K1K2Λ[a1,a2]
K3K4 + ∂K1JΛ[a1,a2]

K2K3K4
J) + . . . ,

δAa1a2
I
J = . . .+ ∂IKΛ[a1,a2]KJ + ∂JKΛ[a1,a2]

IK + ∂K1K2Λ[a1,a2]K1K2J
I

+ ∂K1K2Λ[a1,a2]
K1K2I

J + . . .

δĥab = . . .+ ∂I1I2Λ(a1,a2)I1I2 + ∂I1I2Λ(a1,a2)
I1I2 + . . . (4.37)

While the lowest level transformations of the level three fields are given by

δAa1a2,b = ∂bΛ[a1,a2]
I1I2 + ∂[a1

Λa2],b
I1I2 + . . .

δAa1a2,b = ∂bΛ[a1,a2]I1I2 + ∂[a1
Λa2],bI1I2 + . . .

δAa1a2a3• = ∂[a1
Λa2a3]• + . . . (4.38)

where • stands for the indices of the 912 representation of E7 . It is straightforward to find

the coefficients in front of the above terms using the methods used at lower levels.

4.3 Gauge transformations in eleven dimensions

We now consider the eleven dimensional theory which emerges by decomposing E11, and

the l1 representation, with respect to its SL(11) subalgebra. In this decomposition the

positive level generators of E11 are given by [1]

Ka
b(0); Ra1a2a3(1); Ra1...a6(2); Ra1...a8,b(3), . . . (4.39)

where the figures in the brackets indicate the level. The corresponding fields in the E11⊗s l1
non-linear realisation are given by

ha
b; Aa1a2a3 ; Aa1...a6 ; ha1...a8,b, . . . (4.40)

Decomposing the l1 representation into representations of SL(11) we find that [2]

Pa(0), Za1a2(1), , Za1...a5(2), , Za1...a8(3), , Za1...a7,b(3),

Zb1b2b3,a1...a8(4), Z(b1b2),a1...a9(4), Zb1b2,a1...a9(4), Zb,a1...a10(4), Z(4), . . . (4.41)

The second to last generator in the last line has multiplicity two meaning that the l1 repre-

sentation contains two copies of it. In the non-linear realisation these lead to a generalised

space-time which has the coordinates

xa(0), xa1a2(1), , xa1...a5(2), , xa1...a8(3), , xa1...a7,b(3),

xb1b2b3,a1...a8(4), X(b1b2),a1...a9
(4), xb1b2,a1...a9(4), Xb,a1...a10(4), x(4), . . . (4.42)

We denote the corresponding generalised derivatives by

∂a(0), ∂a1a2(−1), , ∂a1...a5(−2), , ∂a1...a8(−3), , ∂a1...a7,b(−3), . . . ,

∂b1b2b3,a1...a8(−4), ∂(b1b2),a1...a9(−4), ∂b1b2,a1...a9(−4), ∂b,a1...a10(−4), ∂(−4), . . .

(4.43)
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where the number in brackets is the level. They are given in terms of the coordinates in

the way expected, for example, ∂a = ∂
∂xa , ∂

a1a2 = ∂
∂xa1a2

.

The non-linear realisation of E11 ⊗s l1 was systematically constructed at low levels in

reference [24] for the above fields and the coordinates at levels zero, one and two. The

equations of motion for the three form and six form, when truncated to the usual fields

and coordinates, are indeed those of the eleven dimensional maximal supergravity theory.

The field equations for gravity involves the usual field of gravity and the dual gravity field

and these are the subject of further study [40]. Furthermore, once one assumes that these

equations possess the expected SL(11) character, then the symmetries of the E11 ⊗s l1
non-linear realisation appear to determine these equations uniquely.

According to the discussion of section three we should introduce local symmetries with

parameters that are in one to one correspondence with the l1 representation which is, by

construction, in one to one correspondence with the coordinates of equation (4.22). As a

result the local parameters are given by

ξa(0), Λa1a2(1), , Λa1...a5(2), , Λa1...a8(3), , Λa1...a7,b(3),

Λb1b2b3,a1...a8(4), Λ(b1b2),a1...a9
(4), λb1b2,a1...a9(4), Λb,a1...a10(4), Λ(4), . . . (4.44)

We now write down the linearised gauge transformations at low levels, that is find equa-

tion (3.11) in eleven dimensions. These equations should preserve the level and SL(11)

character; the result is as follows

δha
b = ∂aξ

b − 2∂bcΛac +
1

3
δba∂

c1c2Λc1c2 + . . .

δAa1a2a3 = −∂[a1
Λa2a3] − 10∂c1c2Λc1c2a1a2a3 −

1

6
∂a1a2a3

b1b2Λb1b2 −
1

2
∂[a1a2

ξa3] + . . . ,

δAa1...a6 = 2∂[a1
Λa2...a6] + . . . (4.45)

We have taken the liberty of inserted the values of the coefficients that follow from the

analysis given below. We note the appearance of the last two terms in the variation of

the three form whose indices are not in the expected places. These arise from the need to

compensate the group element by a local Ic(E11) transformation in order to preserve its

form.

We now compute the transformations of the coordinates and fields under the rigid

E11 transformation of the form g0 = ea
a1a2a3Ra1a2a3 . Using equation (3.3) we find that the

coordinates transforms as

δxa = 6xb1b2a
b1b2a, δxa1a2 =

5!

2
xb1b2b3a1a2a

b1b2b3 , . . . (4.46)

and, as a result, the generalised derivatives transform as

δ(∂a) = 0, δ(∂a1a2) = −6aa1a2b∂b, δ(∂
a1...a5) = −5!

2
a[a1a2a3∂a4a5], . . . (4.47)
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The linearised transformations of the fields under the same rigid E11 transformation

is given by

δha
b = −18ac1c2bAc1c2a + 2δbaa

c1c2c3Ac1c2c3 ,

δAa1a2a3 = −60ac1c2c3Ac1c2c3a1a2a3 + (2ab1b2b3 + 3h[b1|
da
d|b2b3])δa1a2a3,b1b2b3

δAc1...c6 = −16.7ac1c2c3hc1c2c3aa...a5,a6 + 16.7ac1c2c3hc1c2a1...a6,c3 + . . . (4.48)

Using equations (4.46) and (4.47) to compute the transformation of the right-hand

side of equation (4.45), and comparing this with the transformation of the left-hand side,

given in equation (4.48), we find the coefficients given in equation (4.45).

Finally we find the non-linear gauge variation of the three form field. To this end we

require the generalised vielbein defined in equation (3.8) which is given at low levels by [24]

E = (dete)−
1
2

eµa −3eµ
cAcb1b2 3eµ

cAcb1...b5 + 3
2eµ

cA[b1b2b3A|c|b4b5]

0 (e−1)[b1
µ1(e−1)b2]

µ2 −A[b1b2b3(e−1)b4
µ1(e−1)b5]

µ2

0 0 e−1)[b1
µ1 . . . (e−1)b5]

µ5

 (4.49)

We take the indices to take the values A = a1 and B = a2a3 and for these the left-hand

side of equation (3.13) is given by

(E−1)A
ΠδEΠ

B = (e−1)a1
µ1(e−1)a2

µ2(e−1)a3
µ3δAµ1µ2µ3 (4.50)

It contains the variation of the three form gauge field with world indices. Looking at

equation (4.45) we find that the right-hand side is given by

−(E−1)[a1|
ΠDΠΛ|a2a3] − 10(E−1)b1b2ΠDΠΛb1b2a1a2a3 + . . .

= −(e−1)[a1|
µD̃µΛ|a2a3] − 10(E−1)b1b2ν1ν2D̃

ν1ν2Λb1b2a1a2a3

= −(e−1)[a1|
µD̃µΛ|a2a3] − 10eν1

b1eν2
b2(D̃ν1ν2Λb1b2a1a2a3 − Ων1ν2

,a1a2a3Λc1c2) + . . .

(4.51)

where D̃µ is the covariant derivative with only the connections for Lorentz transformations.

Equating these one can read off the gauge transformation of the three form and one finds

it to be given by

δAµ1µ2µ3 =

− ∂[µ1
Λµ2µ3] − 3A[µ1|ν1ν2

D̃ν1ν2Λ|µ2µ3] − 10(D̃ν1ν2Λν1ν2µ1µ2µ3 + Ων1ν2
,µ1µ2µ3Λν1ν2) + . . .

(4.52)

5 The Explicit form of the Gauge transformations

In this section we will further develop the general theory underlying the gauge transforma-

tions and give explicit formulae for the gauge transformation for all fields in the non-linear

realisation. We begin by considering the generalised spin connection in more detail. The

tangent algebra of the generalised tangent space-time is the Cartan involution invariant
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subalgebra of E11, denoted Ic(E11). We can introduce a corresponding generalised spin

connection which is valued in Ic(E11);

ωΠ ≡ ωΠ,αS
α (5.1)

where Sα are the generators of Ic(E11). The generalised spin connection transforms as

ωΠ
′ = h−1ωΠh+ h−1∂Πh (5.2)

This is just like the parts of the Cartan form that belong to the subalgebra Ic(E11) but as

is clear from the lowest level component, that is, gravity, the generalised spin connection

is not in general simply equal to these components of the Cartan form, see the expression

below equation (2.3). We note that in working out the gauge transformations earlier in this

paper we have used the symbol Ω for the same generalised spin connection. The associated

covariant derivative is given by

DΠ = ∂Π + ωΠ (5.3)

and the corresponding generalised curvatures are defined by

[DΠ, DΛ] = RΠΛ ≡ RΠΛ,αS
α (5.4)

We can also construct the analogue of the generalised torsions

TΠΛ ≡ TΠΛ,
AlA = ∂ΠEΛ + [ωΠ, EΛ]− (Π↔ Λ) (5.5)

where EΠ = EΠ
AlA. The generalised curvature transforms under local Ic(E11) transfor-

mations as RΠΛ
′ = h−1RΠΛh and the torsion in the same way as the vielbein on its upper

index.

To gain a better idea of what these objects contain we will compute the above quantities

in eleven dimensions. The generalised spin connection is given by

ωΠ =
1

2
ωΠ,

a
bJ

b
a + ωΠ,a1a2a3S

a1a2a3 + +ωΠ,a1...a6S
a1...a6 + . . . (5.6)

where the generators of Ic(E11) and their commutators can be found in references [2], or [5],

for example. The curvatures are simple to calculate and are given by

RΠΛ,
a
b = ∂ΠωΛ,

a
b + ωΠ,

a
cωΛ,

c
b − 18ωΠ,

c1c2aωΛ,c1c2b + . . .− (Π↔ Λ),

RΠΛ,a1a2a3 = ∂ΠωΛ,
a1a2a3 + 3ωΠ,

[a1|
cωΛ,

c|a2a3] − 5!

2
ωΠ,c1c2c3ωΛ,

c1c2c3a1a2a3 + . . .− (Π↔ Λ),

RΠΛ,a1...a6 = ∂ΠωΛ,
a1...a6 + 6ωΠ,

[a1|
cωΛ,

c|...a6] + 2ωΠ,
[a1a2a3ωΛ,

a4a5a6] + . . .− (Π↔ Λ), . . .

(5.7)

while the torsions are given by

TΠΛ,
b = ∂ΠEΛ

b + ωΠ,
b
cEΛ

c − 6ωΠ,
bc1c2EΛ,c1c2 + 3.5!ωΠ,

bc1...c5EΛ,c1...c5 + . . .− (Π↔ Λ),

TΠΛ,a1a2 = ∂ΠEΛ,a1a2 + 3ωΠ,
da1a2EΛd − 2ωΠ,

b
[a1|EΛ,|a2]b

− 5!

2
ωΠ,

c1c2c3EΛ,c1c2c3a1a2 + . . .− (Π↔ Λ),

TΠΛ,a1...a5 = ∂ΠEΛ,a1...a5 − 3ωΠ,
da1...a5EΛd

+ 5ωΠ,[a1|
bEΛ,b|a2...a5] + ωΠ,[a1a2a3

EΛ,a4a5] + . . .− (Π↔ Λ), . . . (5.8)
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We have for clarity introduced in this equation a comma to separate the world and

tangent indices on the generalised vielbein. We note that the construction of the Cartan

involution invariant subalgebra Ic(E11) does not preserve the level and as a result neither

do the generalised curvatures and torsions. It is very straightforward to compute the

analogous quantities in five and four dimensions, or indeed in any other dimension.

It would be natural to take the spin connection to satisfy the equation

TΠΛ,
A = 0 (5.9)

At the lowest level this is just the equation that solves the spin connection of general

relativity in terms of the vielbein. In a future paper we will examine the extent to which

this equation determines the generalised spin connection and indeed the role the spin

connection plays in the geometry of the generalised space-time.

Before considering the gauge transformations it will be instructive to consider the

construction of the generalised vielbein in more detail. We can write the E11 ⊗s l1 algebra

in the form

[Rα, Rβ] = fαβγR
γ , [Rα, lA] = −(Dα)A

BlB (5.10)

The Jacobi identities imply that the matrices (Dα)A
B are a representation of the E11

algebra, that is, [Dα, Dβ] = fαβγD
γ . These matrices are related to the matrices of the

l1 representation given in section three, namely D(I + aβR
β) = I + aβD

β to lowest order

in aβ.

The vielbein is defined in equation (3.8) and if we take the E11 group element to be

of the form gE = eAαR
α

then the generalised vielbein is given by

EΠ
A = (eA)Π

A (5.11)

where the matrix A is given by (A)Π
A = Aα(Dα)Π

A and one evaluates equation (5.11) by

expanding the exponential in the usual way and taking the product to be matrix multipli-

cation. We note that we can write the fields either as Aα, or A, which are related as in the

previous sentence.

In section three we discussed the general criterion that the gauge transformations must

satisfy and in section four we used this to derive the gauge transformation in four, five and

eleven dimensions for certain fields. Clearly one can carry this out for all fields as a matter

of principle but we now give an explicit expression for the gauge transformations. We

begin by considering the linearised theory and take the variation of the gauge fields to be

given by

δAα = (Dα)Π
Λ∂ΛΛΠ (5.12)

In other words we take the constants in equation (3.11) to be given by NαΠ
Λ = (Dα)Π

Λ.

Carrying out a rigid g0 ∈ E11 transformations on the parameter, ΛΠ′ = ΛΞD(g−1
0 )Ξ

Λ,

and on the generalised derivative, ∂′Λ = D(g0)Λ
∆∂∆, we find that the right-hand side of

equation (5.12) transforms as

(Dα)Π
Λ∂′ΛΛΠ′ = D(g−1

0 Rαg0)Π
Λ∂ΛΛΠ = (Dα)Π

Λ∂ΛΛΠ + aβf
βγ
α(Dγ)Π

Λ∂ΛΛΠ (5.13)

– 24 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
0

which is indeed the appropriate E11 transformation of δAα. In deriving this result we have

used that D is a representation of E11 and we have taken g0 = I + aβR
β, where aβ are

constants and worked to lowest order in this constant. We raise and lower indices with the

Cartan-Killing metric gα,β which vanishes unless α + β = 0. As a result Dα = gα,βD
β =

gα,−αD
−α

We can express the variation of the fields of equation (5.12) in a more formal way. As

the gauge parameters Λ belong to the l1 representation we can write them in the form

Λ = ΛAlA (5.14)

We note that at the linearised level tangent and world indices are equivalent. As we have

mentioned, the generalised derivatives can be thought of as belonging to the representation

l̄1. This has the generators l̄A which can be taken to be the Cartan involution of those in

l1, that is, Ic(lA) = −l̄A. As such we can package the generalised derivatives in the object

∂ where

∂ = ∂A l̄
A (5.15)

We can then write equation (5.12) as

δAα = [Rα, ∂]AΛA = ([Rα, ∂],Λ) (5.16)

In the last line of this equation we have used the E11 invariant scalar product between

elements of the l1 representation and those of the l1 representation denoted (l̄, l). This

formula provides a much quicker way to compute the linearised gauge variations as [Rα, ∂]

is straight forward to compute using the known commutators between the E11 generators

and those of the l1 representations and the action of the Cartan involution. The one point

that requires a bit more work is to compute the invariant scalar product between the l1 and

l̄1 representations. The general method for determining this scalar product is explained in

appendix A of reference [41] and it is found at low levels in eleven dimensions.

As we have mentioned the fields can also be encoded in the matrix AAB ≡ Aα(Dα)A
B

and then the linearised variation of equation (5.12) can be written as

δAAB = (Dα)A
B(Dα)C

D∂DΛC (5.17)

We note that at lowest order in the fields, EΠ
A = AΠ

A and so also to lowest order

(E−1)A
ΠδEΠ

B = δAAB. As a result equation (5.17) has an obvious non-linear gener-

alisation and we take the non-linear gauge transformations to be given by

E−1
A

ΠδEΠ
B = (Dα)A

B(Dα)C
DDDΛC (5.18)

where as before ΛA = ΛΠEΠ
A and DA ≡ E−1

A
ΠDΠ = E−1

A
Π(∂Π + ΩΠ). If one uses the

local subgroup Ic(E11) to choose the group element to be in the Borel subgroup one will

have to carry out an local Ic(E11) transformation at the same time as that of equation

(5.18) to preserve the form of the vielbein.

The reader may find it consoling to evaluate this gauge transformation at lowest level,

that is for gravity. In this case (Da
b)c

d = δac δ
d
b and substituting this in we find the general

coordinate transformation of equation (2.3).
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Under a rigid g0 ∈ E11⊗s l1 transformation of the form g0 = ea
AlA+aβR

β

the generalised

coordinates change as zA′ = zA + aA − zBaβ(Dβ)B
A ≡ zA + Λ̃A. As such we can treat

these rigid E11 ⊗s l1 transformations as particular gauge transformation with parameter

Λ̃A. Substituting this gauge transformation in equation (5.18) one does indeed recover

the known action of this rigid transformation on the generalised vielbein and so the fields

Aα up to and including order O(Aα). This calculation is a little more non-trivial than it

appears at first sight and so we will not give it here.

We now consider the closure of the non-linear gauge transformations of equation (5.18)

and local Ic(E11) transformations. Let us consider a gauge transformation followed by a

finite local h ∈ Ic(E11) transformation on the vielbein;

EΠ
A → EΠ

A′ = (Dα)B
AEΠ

ED(h)E
B(Dα)C

DD(h−1)D
FD(h)G

CDFΛG

= D(h)F
A(D(hRαh

−1)B
F − δBF )EΠ

E(D(hRαh
−1)C

D − δCD)DDΛC

= D(h)F
AδΛEΠ

F (5.19)

Taking an infinitesimal local Ic(E11) transformation we find that it commutes with the

gauge transformations, as it did for gravity. We have used that the sum over the roots

α is just rearranged by conjugation with h and that ΩΠ behaves like a generalised spin

connection.

We now find the variation of the Cartan forms under the gauge transformations. The

Cartan forms VE belong to the E11 Lie algebra and taking the generators of E11 to be in

the first fundamental representation, that is the l1 representation, they can be written as

GΠA
B ≡ GΠα(Dα)A

B. As we explained above, the generalised vielbein can be thought of

as being the transformation gE in the l1 representation, that is, E = D(gE) and as a result

we can write

GΠ,B
C = (E−1)B

Λ∂ΠEΛ
C , or GA,B

C ≡ (E−1)A
ΠGΠB

C = (E−1)A
Π(E−1)B

Λ∂ΠEΛ
C

(5.20)

Writing the Cartan form in this way makes it easy to find an expression for its gauge

variation and it is then straight forward to show that

δGA,B
C = NADGD,BC −NBDGA,DC +GA,B

DNDB + (E−1)B
Λ∂ΛNAB ≡ DANBC (5.21)

where NAB ≡ (E−1)A
ΠδEΠ

B.

6 Conclusions

In this paper we have proposed gauge transformations for all the fields in the E11 ⊗s l1
non-linear realisation. The gauge parameters are in one to one correspondence with the

first fundamental representation of E11, the l1 representation and so can be thought of

as generalised diffeomorphisms of the generalised space-time. The gauge transformations

of even the familiar fields, for example the form fields, arise from coordinates in the l1
representation that are at a higher level than the usual space-time and even than the

level one coordinates that are Lorentz scalars (see the first column of the table). The E11
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fields which are beyond those usually used to formulate supergravity theories generally

have with mixed symmetry indices and it is to be expected that they will have gauge

transformations with several different parameters. This feature is correctly accounted for

by the gauge transformation proposed in this paper in that these fields are associated with

more than one coordinate in the l1 representation and so do possess more than one gauge

parameter. In section three we gave the general criterion that the gauge transformations

must satisfy for them to be compatible with E11 and this lead us to the gauge variation

given in equation (3.13). These involve the constants NA
B
C
D but these are determined by

purely group theoretic considerations and are easy to compute at low levels, as indeed we

have done in this paper for certain fields in section four. In section five we gave a more

explicit form for the gauge variations.

An interesting recent paper [39] derived the generalised tangent space required for

the closure of the generalised diffeomorphisms associated with U duality. They found

a hierarchy of tensor coordinates which were those found in papers on E11. However,

unlike some other recent works, reference [39] did not borrow the tangent space structures

from E11 papers but derived them from a different perspective. The generalised tangent

space encoded in the E11 ⊗s l1 non-linear realisation arises in a simple way from the l1
realisation and it is the agreement with this that has been found in reference [39]. The

results contained in [39] are also consistent with the approach of this paper that takes

the gauge parameters to belong to the l1 representation. It would be interesting to make

detailed contact between this paper, reference [39] and other recent papers that consider

local transformations associated with U duality.

As we have mentioned the equations of motion for the E11⊗s l1 non-linear realisation,

when computed, at low levels, appear to be unique once one takes into account the sym-

metries encoded in the non-linear realisation at sufficiently high level. This is in contrast

with the more common situation for more traditional non-linear realisations. As such it

would be very interesting to see if the equations of motion that follow from the E11 ⊗s l1
non-linear realisation are invariant under the gauge transformations proposed in this paper.

We have considered some of the very lowest level contributions to the equations of motion

in four and five dimensions and found that they are indeed invariant under the proposed

gauge transformations at the level considered. This is an encouraging sign. As we noted

in section five, a specific gauge transformation leads to the rigid E11 transformations at

least up to linear order in the fields. This will go some way to ensuring that the field

equations are indeed gauge invariant. A similar remark applies to the closure of two gauge

transformations.

The equations of motion for the E11 ⊗s l1 realisation have been computed to higher

levels in fields and coordinates than those given in references [24] and [25], including a

derivation of the equation of motion in the gravity sector [40]. These results will also be

useful for the exploration of the gauge transformations proposed in this paper.

We note that the construction of the equations of motion of the E11 ⊗s l1 non-linear

realisation does not appear to demand that the fields are subject to some kind of condition,

such as the section condition that first appeared in Seigel theory [19–21]. Although it

has been shown how to relax the section condition to accommodate just Scherk-Schwarz
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compactifications [42] it would appear to be difficult to accommodate the most general

type of gauged supergravity using such a condition [43].

We note that the section condition does not appear to have a clear physical motivation.

However, in reference [44] Seigel theory was derived by quantising the first quantised theory

(the sum over world sheet approach constructed from a ten dimensional generalised space-

time) according to the standard principles of quantum mechanics and it was shown that the

ten dimensional coordinates obeyed a non-vanishing commutation relation that required

a choice of representation. However, this calculation has not been repeated in the more

general theories involving the space-time coordinates considered in this paper. By carrying

out this calculation one may hope to gain some insight into the physical origins of the

restriction of the generalised space-time.

Given that the familiar gauge parameters arise from generalised coordinates that are

beyond those at levels zero and one, it would seem natural to take the fields to also depend

on the coordinates of the generalised space-time which are at a higher level. This is indeed

what happened when all the five dimensional maximal supergravities were constructed

from the E11 ⊗s l1 non-linear realisation in reference [9]. However, the dependence of

the fields on the generalised coordinates was in a prescribed manner from the outset. It

should be straightforward to recover this result by computing the general five dimensional

equations of motion in which the way the fields depend on the generalised coordinates

is not prescribed and then inserting into these the required field dependence rather than

working with this dependence from the beginning. In doing this calculation one will be

able to see how the gauge transformations proposed in this paper match up with the local

symmetries of the gauged supergravity and it would give an insight into how to restrict the

dependence of the fields on the generalised space-time. This applies to any dimension and

in particular to four dimensions where the equations of the E11⊗s l1 non-linear realisation

are known [25, 40] at low levels.
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A The E11 ⊗s l1 algebra in five dimensions

In this appendix we give the commutators of the E11⊗s l1 algebra decomposed to GL(5)⊗
E6, that is, the algebra relevant to the five dimensional theory. We used this algebra in

section 4.1. The commutators involving the positive level E11 generators were given in

references [9] and [38] and we use the conventions of the latter. The techniques we use to

derive this algebra can be used to find the E11 ⊗s l1 algebra in any other dimension. The

commutation relations for the E6 generators can be written as

[Rα, Rβ] = fαβγR
γ (A.1)

– 28 –



J
H
E
P
0
8
(
2
0
1
4
)
0
5
0

where fαβγ are the structure constants of E6. The other generators belong to specific rep-

resentations of E6 and this determines their commutators with the E6 generators. Looking

at the generators listed in equation (4.1) we find that

[Rα, RaM ] = (Dα)N
MRaN , [Rα, RabM ] = −(Dα)M

NRabN ,

[Rα, Rabc,β] = fαβγR
abc,γ , [Rα, RabcdMN ] = −(Dα)M

PRabcdPN − (Dα)N
PRabcdMP

(A.2)

where (Dα)N
M obey the relation

[Dα, Dβ]M
N = fαβγ(Dγ)M

N (A.3)

Here fαβγ are the structure constants of E6 and are normalised so as to obey the relation.

fαβγf
αβδ = −4δδγ (A.4)

We lower and raise indices on the E6 generators with the Cartan-Killing metric gαβ of E6.

The above matrices are normalised so that

(Dα)M
N (Dβ)N

M = gαβ (A.5)

The commutation relations of the positive level generators are given by

[RaM , RbN ] = dMNPRabP , [RaN , RbcM ] = gαβ(Dα)M
NRabc,β

[RabM , R
cd
N ] = RabcdMN , [RaP , Rbcd,α] = SαP,MNRabcdMN (A.6)

where dMNP is the completely symmetric invariant tensor of E6 formed from the product

of three 27 representations. The invariant tensor dMNP , which has its indices down, is

completely symmetric product of three 27 indices and satisfies the relation

dMNPdMNQ = δPQ (A.7)

We follow the conventions of reference [38] rather than reference [9], the difference being a

rescaling of d by
√

5.

The symbol SαP,MN , in the last of the equations (A.6), is an invariant tensor, antisym-

metric with respect to MN , and the Jacobi identity between two 1-forms and one 2-form

implies the relation

gαβD
α
Q

(PSβR),MN = −1

2
δ

[M
Q dN ]PR (A.8)

Using the fact that dMNP is completely symmetric in its three indices one can derive from

this the condition

gαβD
α
M
NSβM,PQ = 0 . (A.9)

We also have the relation [38]

gαβD
α
M
NDβ

P
Q =

1

6
δNP δ

Q
M +

1

18
δNMδ

Q
P −

5

3
dNQRdMPR (A.10)
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from which one can show the relations [38]

SαM,NP = −3Dα
Q

[NdP ]MQ (A.11)

and

SαM,NP +
3

2
(DαDβ)Q

MSβQ,NP = 0 . (A.12)

The commutation relations of equation (A.6) follow by writing down the most general

possible commutation relations for the known E11 generators so as to preserve the level

and then enforcing the Jacobi identities, starting with the Jacobi identities involving one

of the E6 generators.

The commutation relations between the generators of E6 and the negative level gen-

erators are

[Rα, Ra,M ] = −(Dα)M
NRa,N , [Rα, Rab

N ] = (Dα)M
NRab

M ,

[Rα, Rabc,
β] = fαβγRabc,

γ , [Rα, Rabcd
MN ] = (Dα)P

MRabcdPN + (Dα)P
NRabcd

MP ,

(A.13)

The Cartan involution acts on the generators of E11 as follows

Ic(K
a
b) = −Kb

a, Ic(R
α) = −R−α, Ic(R

aN ) = −RaMJMN ,

Ic(R
ab
M ) = J−1

MNRab
N , Ic(R

abcα) = −Rabc−α, Ic(R
abcd

MN ) = J−1
MPJ

−1
NQRabcd

PQ,

(A.14)

This equation follows from the knowledge that the Cartan involution takes positive level

roots to negative level roots and as a result it must take superscript space-time indices to

subscript space-time indices. It also takes a positive root α in E6 to −α and, as we have

labelled the E6 generators by their roots, it acts on these as above. One could write a

different matrix J when the Cartan involution Ic acts on each generator, but it is easy to

see that this will not lead to consistent commutators unless they are as given above.

Applying the Cartan involution to the commutators for the positive level E11 gener-

ators, given in equation (A.6), one finds the commutators between the negative level E11

generators:

[RaM , RbN ] = dMNPRab
P , [RaN , RbcM ] = (Dα)N

MRabc,α

[Rab
M , Rcd

N ] = Rabcd
MN , [RaP , Rbcd,α] = SαP,MNRabcd

MN (A.15)

In carrying out this calculation one finds the relations

f−α−β−γ = −fαβγ , JMP (D−α)P
QJ−1

QN = (Dα)N
M ,

dPQR = dMNSJ−1
MPJ

−1
NQJ

−1
SR, SαS,RQ = S−αP,MNJ−1

PSJ
−1
MRJ

−1
NQ (A.16)

The commutators between the positive and negative level generators of E11 are given by

[RaN , RbM ] = 6δab (Dα)M
NRα + δNMK

a
b −

1

3
δNMδ

a
b

∑
c

Kc
c

[RaN , R
bc
M ] = 20dNMP δ

[b
aR

c]P , [RaN , R
b1b2b3α] = 18(Dα)N

Mδ[b1
a Rb2b3]

M (A.17)
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We now give the commutators between the generators of E11 and those of the l1
representation. The commutation relations between the later and the generators of GL(5)

are given by

[Ka
b, Pc] = −δacPb +

1

2
δabPc, [Ka

b, Z
N ] =

1

2
δabZ

N ,

[Ka
b, Z

c
N ] = δcbZ

a
N +

1

2
δabZ

c
N , [Ka

b, Z
c1c2α] = δc1b Z

ac2α + δc2b Z
c1aα +

1

2
δabZ

c1c2α (A.18)

while with the generators of E6 we have

[Rα, Pa] = 0, [Rα, ZM ] = ZN (Dα)N
M , [Rα, ZaN ] = −(Dα)N

MZaM

[Rα, Za1a2β] = fαβγZ
a1a2γ , [Rα, Za1a2a3

NM ] = −(Dα)N
RZa1a2a3

RM − (Dα)M
RZa1a2a3

NR

(A.19)

The commutators of certain of the positive root generators of E11 with the space-time

translations can be taken to be of the form

[RaN , Pb] = δabZ
N , [Ra1a2

N , Pb] = 2δ
[a1

b Z
a2]
N ,

[Ra1a2a3α, Pb] = 3δ
[a1

b Za2a3]α, [Ra1a2a3a4
MN , Pb] = 4δ

[a1

b Za2a3a4]
MN . (A.20)

The coefficients on the right-hand side can be freely chosen and this fixes the normalisation

of the generators that appear on this side of the commutators. The commutation relations

of the remaining positive generators of E11 follow form equation (A.20), the commutators

of the E11 algebra, and the Jacobi relations. One finds that

[RaM , ZN ] = −dMNPZaP [RaM , ZbN ] = −(Dα)N
MZabα,

[Ra1a2
M , ZN ] = −(Dα)M

NZa1a2α, [Ra1a2
M , Za3

N ] = Za1a2a3
MN ,

[Ra1M , Za2a3α] = −SαM [RS] Za1a2a3
RS , [R

a1a2a3α, ZM ] = −SαM [RS]Za1a2a3
RS .

(A.21)

The commutators between the level -1 generators of E11 and those of the l1 represen-

tation are

[RaN , Z
M ] = δMN Pa, [RaN , Z

b
M ] = −10dNMP δ

b
aZ

P ,

[RaN , Z
b1b2α] = −12(Dα)N

P δ[b1
a Z

b2]
P (A.22)
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