1,498 research outputs found

    Naturallyoccurring differences in cenh3 affect chromosome segregation in zygotic mitosis of hybrids

    Get PDF
    The point of attachment of spindle microtubules to metaphase chromosomes is known as the centromere. Plant and animal centromeres are epigenetically specified by a centromere-specific variant of Histone H3, CENH3 (a.k.a. CENP-A). Unlike canonical histones that are invariant, CENH3 proteins are accumulating substitutions at an accelerated rate. This diversification of CENH3 is a conundrum since its role as the key determinant of centromere identity remains a constant across species. Here, we ask whether naturally occurring divergence in CENH3 has functional consequences. We performed functional complementation assays on cenh3-1, a null mutation in Arabidopsis thaliana, using untagged CENH3s from increasingly distant relatives. Contrary to previous results using GFP-tagged CENH3, we find that the essential functions of CENH3 are conserved across a broad evolutionary landscape. CENH3 from a species as distant as the monocot Zea mays can functionally replace A. thaliana CENH3. Plants expressing variant CENH3s that are fertile when selfed show dramatic segregation errors when crossed to a wild-type individual. The progeny of this cross include hybrid diploids, aneuploids with novel genetic rearrangements and haploids that inherit only the genome of the wild-type parent. Importantly, it is always chromosomes from the plant expressing the divergent CENH3 that missegregate. Using chimeras, we show that it is divergence in the fast-evolving N-terminal tail of CENH3 that is causing segregation errors and genome elimination. Furthermore, we analyzed N-terminal tail sequences from plant CENH3s and discovered a modular pattern of sequence conservation. From this we hypothesize that while the essential functions of CENH3 are largely conserved, the N-terminal tail is evolving to adapt to lineage-specific centromeric constraints. Our results demonstrate that this lineage-specific evolution of CENH3 causes inviability and sterility of progeny in crosses, at the same time producing karyotypic variation. Thus, CENH3 evolution can contribute to postzygotic reproductive barriers

    Combination of Insecticide Treated Nets and Indoor Residual Spraying in Northern Tanzania Provides Additional Reduction in Vector Population Density and Malaria Transmission Rates Compared to Insecticide Treated Nets Alone: A Randomised Control Trial.

    Get PDF
    Indoor residual spraying (IRS) combined with insecticide treated nets (ITN) has been implemented together in several sub-Saharan countries with inconclusive evidence that the combined intervention provides added benefit. The impact on malaria transmission was evaluated in a cluster randomised trial comparing two rounds of IRS with bendiocarb plus universal coverage ITNs, with ITNs alone in northern Tanzania. From April 2011 to December 2012, eight houses in 20 clusters per study arm were sampled monthly for one night with CDC light trap collections. Anopheles gambiae s.l. were identified to species using real time PCR Taq Man and tested for the presence of Plasmodium falciparum circumsporozoite protein. ITN and IRS coverage was estimated from household surveys. IRS coverage was more than 85% in two rounds of spraying in January and April 2012. Household coverage with at least one ITN per house was 94.7% after the universal coverage net campaign in the baseline year and the proportion of household with all sleeping places covered by LLIN was 50.1% decreasing to 39.1% by the end of the intervention year. An.gambiae s.s. comprised 80% and An.arabiensis 18.3% of the anopheline collection in the baseline year. Mean An.gambiae s.l. density in the ITN+IRS arm was reduced by 84% (95%CI: 56%-94%, p = 0.001) relative to the ITN arm. In the stratum of clusters categorised as high anopheline density at baseline EIR was lower in the ITN+IRS arm compared to the ITN arm (0.5 versus 5.4 per house per month, Incidence Rate Ratio: 0.10, 95%CI: 0.01-0.66, p-value for interaction <0.001). This trial provides conclusive evidence that combining carbamate IRS and ITNs produces major reduction in Anopheles density and entomological inoculation rate compared to ITN alone in an area of moderate coverage of LLIN and high pyrethroid resistance in An.gambiae s.s

    Rapid Heterotrophic Ossification with Cryopreserved Poly(ethylene glycol-) Microencapsulated BMP2-Expressing MSCs

    Get PDF
    Autologous bone grafting is the most effective treatment for long-bone nonunions, but it poses considerable risks to donors, necessitating the development of alternative therapeutics. Poly(ethylene glycol) (PEG) microencapsulation and BMP2 transgene delivery are being developed together to induce rapid bone formation. However, methods to make these treatments available for clinical applications are presently lacking. In this study we used mesenchymal stem cells (MSCs) due to their ease of harvest, replication potential, and immunomodulatory capabilities. MSCs were from sheep and pig due to their appeal as large animal models for bone nonunion. We demonstrated that cryopreservation of these microencapsulated MSCs did not affect their cell viability, adenoviral BMP2 production, or ability to initiate bone formation. Additionally, microspheres showed no appreciable damage from cryopreservation when examined with light and electron microscopy. These results validate the use of cryopreservation in preserving the viability and functionality of PEG-encapsulated BMP2-transduced MSCs

    Isolation and Differentiation of Mesenchymal Stem Cells From Broiler Chicken Compact Bones

    Get PDF
    Chicken mesenchymal stem cells (MSCs) can be used as an avian culture model to better understand osteogenic, adipogenic, and myogenic pathways and to identify unique bioactive nutrients and molecules which can promote or inhibit these pathways. MSCs could also be used as a model to study various developmental, physiological, and therapeutic processes in avian and other species. MSCs are multipotent stem cells that are capable of differentiation into bone, muscle, fat, and closely related lineages and express unique and specific cell surface markers. MSCs have been isolated from numerous sources including human, mouse, rabbit, and chicken with potential clinical and agricultural applications. MSCs from chicken compact bones have not been isolated and characterized yet. In this study, MSCs were isolated from compact bones of the femur and tibia of day-old male broiler chicks to investigate the biological characteristics of the isolated cells. Isolated cells took 8–10 days to expand, demonstrated a monolayer growth pattern and were plastic adherent. Putative MSCs were spindle-shaped with elongated ends and showed rapid proliferation. MSCs demonstrated osteoblastic, adipocytic, and myogenic differentiation when induced with specific differentiation media. Cell surface markers for MSCs such as CD90, CD105, CD73, CD44 were detected positive and CD31, CD34, and CD45 cells were detected negative by PCR assay. The results suggest that MSCs isolated from broiler compact bones (cBMSCs) possess similar biological characteristics as MSCs isolated from other chicken tissue sources

    Identification of ASYNAPTIC4, a Component of the Meiotic Chromosome Axis

    Get PDF
    International audienceDuring the leptotene stage of prophase I of meiosis, chromatids become organized into a linear looped array via a protein axis that forms along the loop bases. Establishment of the axis is essential for the subsequent synapsis of the homologous chromosome pairs and the progression of recombination to form genetic crossovers. Here, we describe ASYNAPTIC4 (ASY4), a meiotic axis protein in Arabidopsis (Arabidopsis thaliana). ASY4 is a small coiled-coil protein that exhibits limited sequence similarity with the carboxyl-terminal region of the axis protein ASY3. We used enhanced yellow fluorescent protein-tagged ASY4 to show that ASY4 localizes to the chromosome axis throughout prophase I. Bimolecular fluorescence complementation revealed that ASY4 interacts with ASY1 and ASY3, and yeast two-hybrid analysis confirmed a direct interaction between ASY4 and ASY3. Mutants lacking full-length ASY4 exhibited defective axis formation and were unable to complete synapsis. Although the initiation of recombination appeared to be unaffected in the asy4 mutant, the number of crossovers was reduced significantly, and crossovers tended to group in the distal parts of the chromosomes. We conclude that ASY4 is required for normal axis and crossover formation. Furthermore, our data suggest that ASY3/ASY4 are the functional homologs of the mammalian SYCP2/SYCP3 axial components
    corecore