2,573 research outputs found

    Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens

    Get PDF
    BACKGROUND: In learning and memory tasks, requiring visual spatial memory (VSM), males exhibit superior performance to females (a difference attributed to the hormonal influence of estrogen). This study examined the influence of phytoestrogens (estrogen-like plant compounds) on VSM, utilizing radial arm-maze methods to examine varying aspects of memory. Additionally, brain phytoestrogen, calbindin (CALB), and cyclooxygenase-2 (COX-2) levels were determined. RESULTS: Female rats receiving lifelong exposure to a high-phytoestrogen containing diet (Phyto-600) acquired the maze faster than females fed a phytoestrogen-free diet (Phyto-free); in males the opposite diet effect was identified. In a separate experiment, at 80 days-of-age, animals fed the Phyto-600 diet lifelong either remained on the Phyto-600 or were changed to the Phyto-free diet until 120 days-of-age. Following the diet change Phyto-600 females outperformed females switched to the Phyto-free diet, while in males the opposite diet effect was identified. Furthermore, males fed the Phyto-600 diet had significantly higher phytoestrogen concentrations in a number of brain regions (frontal cortex, amygdala & cerebellum); in frontal cortex, expression of CALB (a neuroprotective calcium-binding protein) decreased while COX-2 (an inducible inflammatory factor prevalent in Alzheimer's disease) increased. CONCLUSIONS: Results suggest that dietary phytoestrogens significantly sex-reversed the normal sexually dimorphic expression of VSM. Specifically, in tasks requiring the use of reference, but not working, memory, VSM was enhanced in females fed the Phyto-600 diet, whereas, in males VSM was inhibited by the same diet. These findings suggest that dietary soy derived phytoestrogens can influence learning and memory and alter the expression of proteins involved in neural protection and inflammation in rats

    Increased brain activation during working memory processing after pediatric mild traumatic brain injury (mTBI).

    Get PDF
    Purpose: The neural substrate of post-concussive symptoms following the initial injury period after mild traumatic brain injury (mTBI) in pediatric populations remains poorly elucidated. This study examined neuropsychological, behavioral, and brain functioning in adolescents post-mTBI to assess whether persistent differences were detectable up to a year post-injury. Methods: Nineteen adolescents (mean age 14.7 years) who experienced mTBI 3–12 months previously (mean 7.5 months) and 19 matched healthy controls (mean age 14.0 years) completed neuropsychological testing and an fMRI auditory-verbal N-back working memory task. Parents completed behavioral ratings. Results: No between-group differences were found for cognition, behavior, or N-back task performance, though the expected decreased accuracy and increased reaction time as task difficulty increased were apparent. However, the mTBI group showed significantly greater brain activation than controls during the most difficult working memory task condition. Conclusion: Greater working memory task-related activation was found in adolescents up to one year post-mTBI relative to controls, potentially indicating compensatory activation to support normal task performance. Differences in brain activation in the mTBI group so long after injury may indicate residual alterations in brain function much later than would be expected based on the typical pattern of natural recovery, which could have important clinical implications

    New Insights into the Structure of (1→3,1→6)-β-D-Glucan Side Chains in the Candida glabrata Cell Wall

    Get PDF
    β-glucan is a (1→3)-β-linked glucose polymer with (1→6)-β-linked side chains and a major component of fungal cell walls. β-glucans provide structural integrity to the fungal cell wall. The nature of the (1–6)-β-linked side chain structure of fungal (1→3,1→6)-β-D-glucans has been very difficult to elucidate. Herein, we report the first detailed structural characterization of the (1→6)-β-linked side chains of Candida glabrata using high-field NMR. The (1→6)-β-linked side chains have an average length of 4 to 5 repeat units spaced every 21 repeat units along the (1→3)-linked polymer backbone. Computer modeling suggests that the side chains have a bent curve structure that allows for a flexible interconnection with parallel (1→3)-β-D-glucan polymers, and/or as a point of attachment for proteins. Based on these observations we propose new approaches to how (1→6)-β-linked side chains interconnect with neighboring glucan polymers in a manner that maximizes fungal cell wall strength, while also allowing for flexibility, or plasticity

    Decreased cerebral blood flow in chronic pediatric mild TBI: an MRI perfusion study

    Get PDF
    We evaluated cerebral blood flow (CBF) in chronic pediatric mild traumatic brain injury (mTBI) using arterial spin labeling (ASL) magnetic resonance imaging perfusion. mTBI patients showed lower CBF than controls in bilateral frontotemporal regions, with no between-group cognitive differences. Findings suggest ASL may be useful to assess functional abnormalities in pediatric mTBI

    Chiral Modes at Exceptional Points in Exciton-Polariton Quantum Fluid

    Get PDF
    We demonstrate the generation of chiral modes-vortex flows with fixed handedness in exciton-polariton quantum fluids. The chiral modes arise in the vicinity of exceptional points (non-Hermitian spectral degeneracies) in an optically induced resonator for exciton polaritons. In particular, a vortex is generated by driving two dipole modes of the non-Hermitian ring resonator into degeneracy. Transition through the exceptional point in the space of the system's parameters is enabled by precise manipulation of real and imaginary parts of the closed-wall potential forming the resonator. As the system is driven to the vicinity of the exceptional point, we observe the formation of a vortex state with a fixed orbital angular momentum (topological charge). This method can be extended to generate higher-order orbital angular momentum states through coalescence of multiple non-Hermitian spectral degeneracies. Our Letter demonstrates the possibility of exploiting nontrivial and counterintuitive properties of waves near exceptional points in macroscopic quantum systems

    Geometric Configurations, Regular Subalgebras of E10 and M-Theory Cosmology

    Get PDF
    We re-examine previously found cosmological solutions to eleven-dimensional supergravity in the light of the E_{10}-approach to M-theory. We focus on the solutions with non zero electric field determined by geometric configurations (n_m, g_3), n\leq 10. We show that these solutions are associated with rank gg regular subalgebras of E_{10}, the Dynkin diagrams of which are the (line) incidence diagrams of the geometric configurations. Our analysis provides as a byproduct an interesting class of rank-10 Coxeter subgroups of the Weyl group of E_{10}.Comment: 48 pages, 27 figures, 5 tables, references added, typos correcte

    Full potential LAPW calculation of electron momentum density and related properties of Li

    Full text link
    Electron momentum density and Compton profiles in Lithium along ,, , and directions are calculated using Full-Potential Linear Augmented Plane Wave basis within generalized gradient approximation. The profiles have been corrected for correlations with Lam-Platzman formulation using self-consistent charge density. The first and second derivatives of Compton profiles are studied to investigate the Fermi surface breaks. Decent agreement is observed between recent experimental and our calculated values. Our values for the derivatives are found to be in better agreement with experiments than earlier theoretical results. Two-photon momentum density and one- and two-dimensional angular correlation of positron annihilation radiation are also calculated within the same formalism and including the electron-positron enhancement factor.Comment: 11 pages, 7 figures TO appear in Physical Review

    Hypermatrix factors for string and membrane junctions

    Full text link
    The adjoint representations of the Lie algebras of the classical groups SU(n), SO(n), and Sp(n) are, respectively, tensor, antisymmetric, and symmetric products of two vector spaces, and hence are matrix representations. We consider the analogous products of three vector spaces and study when they appear as summands in Lie algebra decompositions. The Z3-grading of the exceptional Lie algebras provide such summands and provides representations of classical groups on hypermatrices. The main natural application is a formal study of three-junctions of strings and membranes. Generalizations are also considered.Comment: 25 pages, 4 figures, presentation improved, minor correction
    • …
    corecore