90 research outputs found

    Materiales y técnicas de fase vapor para la síntesis de recubrimientos cerámicos

    Get PDF
    [ES] Se hace un descripción de los avances recientes en la síntesis de recubrimientos duros de tipo cerámico, depositados mediante técnicas de deposición en fase vapor. Se dedica especial atención a los parámetros del proceso de deposición que controlan las propiedades finales de las capas (estructura cristalina, morfología, etc), tales como la energía de llegada de los átomos a las superficie en crecimiento, y la temperatura. Finalmente, se hace una revisión de los materiales más relevantes en lo que se refiere a sus aplicaciones como recubrimientos duros y protectores, o como recubrimientos decorativos, entre ellos, la familia de los nitruros, carburos y óxidos metálicos, depositados en diversos tipos de estructuras (monolíticas, multicapas y nanocomposites), y los compuestos ternarios del sistema BCN.[EN] A survey on recent advances in the synthesis of hard ceramic coatings is given, including materials processes and techniques. Emphasis is made on the parameters which control the coating properties (crystalline structure, morphology, etc), namely arrival energy of the atoms to the growing surface and substrate temperature. Some relevant coating materials are discussed in relation to their applications either as hard protective coatings or with decorative purposes, namely: the family of metal nitrides, carbides, and oxides, in different layer structures (monolithic, multilayers and nanocomposites) and ternary compounds of the BCN system.Peer reviewe

    3D-printed rotating spinnerets create membranes with a twist

    Full text link
    Round hollow fiber membranes are long-established in applications such as gas separation, ultrafiltration and blood dialysis. Yet, it is well known that geometrical topologies can introduce secondary ow patterns counteracting mass transport limitations, stemming from diffusion resistances and fouling. We present a new systematic method- ology to fabricate novel membrane architectures. We use the freedom of design by 3D-printing spinnerets, having multiple bore channels of any geometry. First, such spinnerets are stationary to fabricate straight bore channels inside a monolithic membrane. Second, in an even more complex design, a new mechanical system enables rotating the spinneret. Such rotating multibore spinnerets enable (A) the preparation of twisted channels inside a porous monolithic membrane as well as (B) a helical twist of the outside geometry. The spun material systems comprise classical polymer solutions as well as metal-polymer slurries resulting in solid porous metallic monolithic membrane after thermal post-processing. It is known that twisted spiral-type bore channel geometries are potentially superior over straight channels with respect to mass and heat polarization phenomena, however their fabrication was cumber- some in the past. Now, the described methodology enables membrane fabrication to tailor the membrane geometry to the needs of the membrane process

    TPMS-based membrane lung with locally-modified permeabilities for optimal flow distribution

    Get PDF
    Membrane lungs consist of thousands of hollow fiber membranes packed together as a bundle. The devices often suffer from complications because of non-uniform flow through the membrane bundle, including regions of both excessively high flow and stagnant flow. Here, we present a proof-of-concept design for a membrane lung containing a membrane module based on triply periodic minimal surfaces (TPMS). By warping the original TPMS geometries, the local permeability within any region of the module could be raised or lowered, allowing for the tailoring of the blood flow distribution through the device. By creating an iterative optimization scheme for determining the distribution of streamwise permeability inside a computational porous domain, the desired form of a lattice of TPMS elements was determined via simulation. This desired form was translated into a computer-aided design (CAD) model for a prototype device. The device was then produced via additive manufacturing in order to test the novel design against an industry-standard predicate device. Flow distribution was verifiably homogenized and residence time reduced, promising a more efficient performance and increased resistance to thrombosis. This work shows the promising extent to which TPMS can serve as a new building block for exchange processes in medical devices

    A novel microfiber wipe for delivery of active substances to human skin : clinical proof of concept

    Get PDF
    A novel technology for the delivery of active substances to the skin based on microfibers loaded with dried active substances was developed. The objective of this work was to demonstrate deposition of the active substances on the skin including concurrent cleansing properties of the wipe. As model active substance to measure deposition capacity Niacinamide was used and as parameter to measure cleansing capacities of the wipe squalene uptake was measured. Wipes loaded with niacinamide were used in the face and the forearm of 25 subjects. By means of Raman spectrometry the deposited niacinamide was analyzed before and after application. Wipes used on the face were analyzed for squalene to assess skin cleansing properties and for residual niacinamide. Forearm analysis including placebo and verum on left and right arm respectively was performed to rule out changes of the skin through application of the tissue. Measured amounts of niacinamide from face application demonstrate statistically significant results in the study population. Analysis of the wipes used show a liberation of 28.3% of niacinamide from the wipes and an uptake of 1.7 mg squalene per wipe. Results from forearm application show statistically significant differences (p < 0.05) between placebo and active for the complete study population. Sub group analyses are significant for both gender and ethnicity for face and forearm analysis respectively. Results clearly demonstrate deposition of niacinamide on the skin and the cleansing properties of the wipe. The institutional review board approved this prospective study

    Forward pi^0 Production and Associated Transverse Energy Flow in Deep-Inelastic Scattering at HERA

    Full text link
    Deep-inelastic positron-proton interactions at low values of Bjorken-x down to x \approx 4.10^-5 which give rise to high transverse momentum pi^0 mesons are studied with the H1 experiment at HERA. The inclusive cross section for pi^0 mesons produced at small angles with respect to the proton remnant (the forward region) is presented as a function of the transverse momentum and energy of the pi^0 and of the four-momentum transfer Q^2 and Bjorken-x. Measurements are also presented of the transverse energy flow in events containing a forward pi^0 meson. Hadronic final state calculations based on QCD models implementing different parton evolution schemes are confronted with the data.Comment: 27 pages, 8 figures and 3 table
    corecore