91 research outputs found

    Primary osteoblast-like cells from patients with end-stage kidney disease reflect gene expression, proliferation, and mineralization characteristics ex vivo.

    Get PDF
    Osteocytes regulate bone turnover and mineralization in chronic kidney disease. As osteocytes are derived from osteoblasts, alterations in osteoblast function may regulate osteoblast maturation, osteocytic transition, bone turnover, and skeletal mineralization. Thus, primary osteoblast-like cells were cultured from bone chips obtained from 24 pediatric ESKD patients. RNA expression in cultured cells was compared with RNA expression in cells from healthy individuals, to RNA expression in the bone core itself, and to parameters of bone histomorphometry. Proliferation and mineralization rates of patient cells were compared with rates in healthy control cells. Associations were observed between bone osteoid accumulation, as assessed by bone histomorphometry, and bone core RNA expression of osterix, matrix gla protein, parathyroid hormone receptor 1, and RANKL. Gene expression of osteoblast markers was increased in cells from ESKD patients and signaling genes including Cyp24A1, Cyp27B1, VDR, and NHERF1 correlated between cells and bone cores. Cells from patients with high turnover renal osteodystrophy proliferated more rapidly and mineralized more slowly than did cells from healthy controls. Thus, primary osteoblasts obtained from patients with ESKD retain changes in gene expression ex vivo that are also observed in bone core specimens. Evaluation of these cells in vitro may provide further insights into the abnormal bone biology that persists, despite current therapies, in patients with ESKD

    Altered Osteocyte-Specific Protein Expression in Bone after Childhood Solid Organ Transplantation

    Get PDF
    Background Bone fragility is common post solid organ transplantation but little is known about bone pathology on a tissue level. Abnormal osteocytic protein expression has been linked to compromised bone health in chronic kidney disease (CKD) and immunosuppressant medications may impact osteocyte function. Methods Transiliac bone biopsies were obtained from 22 pediatric solid organ allograft recipients (average age 15.6 years) an average of 6.3 +/- 1.2 years after transplantation and from 12 pediatric pre-dialysis CKD patients (average age 13.2 years). Histomorphometry and immunohistochemistry for FGF23, DMP1, sclerostin, and osteopontin were performed on all biopsies. Results FGF23 and sclerostin were increased in transplant recipients relative to non-transplant CKD, regardless of the type of allograft received and despite, in the case of liver and heart recipients, a higher GFR. Bone DMP1 expression was higher in liver or heart than in kidney recipients, concomitant with higher serum phosphate values. Osteopontin expression was higher in CKD than in transplant recipients (p Conclusions Solid-organ transplantation is associated with increased FGF23 and sclerostin expression. The contribution of these findings to compromised bone health post transplantation warrants further evaluation.Peer reviewe

    Bone material properties and response to teriparatide in osteoporosis due to WNT1 and PLS3 mutations

    Get PDF
    Context: Patients with osteoporosis-associated WNT1 or PLS3 mutations have unique bone histomorphometric features and osteocyte-specific hormone expression patterns. Objective: To investigate the effects of WNT1 and PLS3 mutations on bone material properties. Design: Transiliac bone biopsies were evaluated by quantitative backscattered electron imaging, immunohistochemistry, and bone histomorphometry. Setting: Ambulatory patients. Patients: Three pediatric and eight adult patients with WNT1 or PLS3 mutations. Intervention: Bone mineralization density distribution and osteocyte protein expression was evaluated in 11 patients and repeated in six patients who underwent repeat biopsy after 24 months of teriparatide treatment. Main outcome measure: Bone mineralization density distribution and protein expression. Results: Children with WNT1 or PLS3 mutations had heterogeneous bone matrix mineralization, consistent with bone modeling during growth. Bone matrix mineralization was homogenous in adults and increased throughout the age spectrum. Teriparatide had very little effect on matrix mineralization or bone formation in patients with WNT1 or PLS3 mutations. However, teriparatide decreased trabecular osteocyte lacunae size and increased trabecular bone FGF23 expression. Conclusion: The contrast between preserved bone formation with heterogeneous mineralization in children and low bone turnover with homogenous bone mineral content in adults suggests that WNT1 and PLS3 have differential effects on bone modeling and remodeling. The lack of change in matrix mineralization in response to teriparatide, despite clear changes in osteocyte lacunae size and protein expression, suggests that altered WNT1 and PLS3 expression may interfere with coupling of osteocyte, osteoblast, and osteoclast function. Further studies are warranted to determine the mechanism of these changes.Peer reviewe

    FGF-23 in bone biology

    Get PDF
    Recent studies have demonstrated that levels of fibroblast growth factor 23 (FGF-23), a key regulator of phosphorus and vitamin D metabolism, rise dramatically as renal function declines and may play a key initiating role in disordered mineral and bone metabolism in patients with chronic kidney disease (CKD). The physiologic importance of FGF-23 in mineral metabolism was first identified in human genetic and acquired rachitic diseases and further characterized in animal models. FGF-23 and its regulators, including phosphate regulating endopeptidase homolog, dentin matrix 1 (DMP1), and matrix extracellular phosphoglycoprotein, are made primarily in bone, specifically in osteocytes. Dysregulation of these proteins results in osteomalacia, implicating the osteocyte in the regulation of skeletal mineralization. Studies in pediatric patients with CKD, the majority of whom have altered skeletal mineralization in early stages of CKD, have demonstrated that skeletal expression of both FGF-23 and its regulator, DMP1, are increased in early stages of CKD and that expression of these proteins is associated with alterations in skeletal mineralization. Thus, dysregulation of osteocytic proteins occur very early in the course of CKD and appear to be central to altered bone and mineral metabolism in this patient population

    Response of different PTH assays to therapy with sevelamer or CaCO3 and active vitamin D sterols

    Get PDF
    Amino-terminally truncated parathyroid hormone (PTH) fragments are detected to differing degrees by first- and second-generation immunometric PTH assays (PTH-IMAs), and acute changes in serum calcium affect the proportion of these fragments in circulation. However, the effect of chronic calcium changes and different vitamin D doses on these PTH measurements remains to be defined. In this study, 60 pediatric dialysis patients, aged 13.9 ± 0.7 years, with secondary hyperparathyroidism were randomized to 8 months of therapy with oral vitamin D combined with either calcium carbonate (CaCO3) or sevelamer. Serum phosphorus levels did not differ between groups. Serum calcium levels rose from 9.3 ± 0.1 to 9.7 ± 0.1 mg/dl during CaCO3 therapy (p < 0.01 from baseline) but remained unchanged during sevelamer therapy. In the CaCO3 and sevelamer groups, baseline serum PTH levels (1st PTH-IMA; Nichols Institute Diagnostics, San Clemente, CA) were 964 ± 75 and 932 ± 89 pg/ml, and levels declined to 491 ± 55 and 543 ± 59 pg/ml, respectively (nonsignificant between groups). Patients treated with sevelamer received higher doses of vitamin D than those treated with CaCO3. The PTH values obtained by first- and second-generation PTH-IMAs correlated closely throughout therapy and the response of PTH was similar to both PTH-IMAs, despite differences in serum calcium levels

    Efficacy and safety of paricalcitol in children with stages 3 to 5 chronic kidney disease

    Get PDF
    BACKGROUND: Elevated intact parathyroid hormone (iPTH) levels can contribute to morbidity and mortality in children with chronic kidney disease (CKD). We evaluated the pharmacokinetics, efficacy, and safety of oral paricalcitol in reducing iPTH levels in children with stages 3-5 CKD.METHODS: Children aged 10-16 years with stages 3-5 CKD were enrolled in two phase 3 studies. The stage 3/4 CKD study characterized paricalcitol pharmacokinetics and compared the efficacy and safety of paricalcitol with placebo followed by an open-label period. The stage 5 CKD study evaluated the efficacy and safety of paricalcitol (no comparator) in children with stage 5 CKD undergoing dialysis.RESULTS: In the stage 3/4 CKD study, mean peak plasma concentration and area under the time curve from zero to infinity were 0.13 ng/mL and 2.87 ng•h/((or ng×h/))mL, respectively, for 12 children who received 3 μg paricalcitol. Thirty-six children were randomized to paricalcitol or placebo; 27.8% of the paricalcitol group achieved two consecutive iPTH reductions of ≥30% from baseline versus none of the placebo group (P = 0.045). Adverse events were higher in children who received placebo than in those administered paricalcitol during the double-blind treatment (88.9 vs. 38.9%; P = 0.005). In the stage 5 CKD study, eight children (61.5%) had two consecutive iPTH reductions of ≥30% from baseline, and five (38.5%) had two consecutive iPTH values of between 150 and 300 pg/mL. Clinically meaningful hypercalcemia occurred in 21% of children.CONCLUSIONS: Oral paricalcitol in children aged 10-16 years with stages 3-5 CKD reduced iPTH levels and the treatment was well tolerated. Results support an initiating dose of 1 μg paricalcitol 3 times weekly in children aged 10-16 years.</p

    CKD-MBD after kidney transplantation

    Get PDF
    Successful kidney transplantation corrects many of the metabolic abnormalities associated with chronic kidney disease (CKD); however, skeletal and cardiovascular morbidity remain prevalent in pediatric kidney transplant recipients and current recommendations from the Kidney Disease Improving Global Outcomes (KDIGO) working group suggest that bone disease—including turnover, mineralization, volume, linear growth, and strength—as well as cardiovascular disease be evaluated in all patients with CKD. Although few studies have examined bone histology after renal transplantation, current data suggest that bone turnover and mineralization are altered in the majority of patients and that biochemical parameters are poor predictors of bone histology in this population. Dual energy X-ray absorptiometry (DXA) scanning, although widely performed, has significant limitations in the pediatric transplant population and values have not been shown to correlate with fracture risk; thus, DXA is not recommended as a tool for the assessment of bone density. Newer imaging techniques, including computed tomography (quantitative CT (QCT), peripheral QCT (pQCT), high resolution pQCT (HR-pQCT) and magnetic resonance imaging (MRI)), which provide volumetric assessments of bone density and are able to discriminate bone microarchitecture, show promise in the assessment of bone strength; however, future studies are needed to define the value of these techniques in the diagnosis and treatment of renal osteodystrophy in pediatric renal transplant recipients
    • …
    corecore