36 research outputs found

    Devotions for Advent 2022 Canticles of Luke

    Get PDF
    Each week of this Advent devotional will focus on one of the four Lukan canticles, putting it in its context as well as making connections to other portions of Scripture. At the end of this Advent season, may we, like those who have gone before us, “sing to the Lord, bless his name; tell of his salvation from day to day” (Ps. 96:2). Many thanks to all the CSL and CTSFW students who contributed devotional reflections. A special note of thanks to my counterpart, Zachary Roll, who organized this effort at Concordia Seminary, St. Louis who has been a joy to work with and to get to know. A final note of thanks to Kim Hosier in the print shop and Rev. Dr. Paul Grime for their aid in completing this devotional booklet.https://scholar.csl.edu/osp/1021/thumbnail.jp

    Devotions for Lent 2023 Hymns of Lent

    Get PDF
    This Lent, we will continue reflecting on hymns of faith, namely, some of our most beloved Lenten hymns. 10 such hymns have been chosen to fill the 40(+) days of Lent. Therefore, this devotional, different from previous editions, does not proceed on a weekly basis, but merely flows from one hymn to the next. Also different from previous editions, the devotional reflections are specifically based on the stanzas of the selected hymns. Therefore, each day’s reflection features the text of the hymn stanza, a devotion based on that stanza, a prayer, and then a Scripture passage or passages for further meditation. I pray these reflections may be of edification for you during this Lenten season.https://scholar.csl.edu/osp/1022/thumbnail.jp

    Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes

    No full text
    The organismal body axes that are formed during embryogenesis are intimately linked to intrinsic asymmetries established at the cellular scale in oocytes.1 However, the mechanisms that generate cellular asymmetries within the oocyte and then transduce that polarity to organismal scale body axes are poorly understood outside of select model organisms. Here, we report an axis-defining event in meiotic oocytes of the sea star Patiria miniata. Dishevelled (Dvl) is a cytoplasmic Wnt pathway effector required for axis development in diverse species,2-4 but the mechanisms governing its function and distribution remain poorly defined. Using time-lapse imaging, we find that Dvl localizes uniformly to puncta throughout the cell cortex in Prophase I-arrested oocytes but becomes enriched at the vegetal pole following meiotic resumption through a dissolution-reassembly mechanism. This process is driven by an initial disassembly phase of Dvl puncta, followed by selective reformation of Dvl assemblies at the vegetal pole. Rather than being driven by Wnt signaling, this localization behavior is coupled to meiotic cell cycle progression and influenced by Lamp1+ endosome association and Frizzled receptors pre-localized within the oocyte cortex. Our results reveal a cell cycle-linked mechanism by which maternal cellular polarity is transduced to the embryo through spatially regulated Dvl dynamics

    Polarized Dishevelled dissolution and reassembly drives embryonic axis specification in sea star oocytes

    No full text
    The organismal body axes that are formed during embryogenesis are intimately linked to intrinsic asymmetries established at the cellular scale in oocytes (1). However, the mechanisms that generate cellular asymmetries within the oocyte, and then transduce that polarity to organismal scale body axes are poorly understood outside of select model organisms. Here, we report an axis-defining event in meiotic oocytes of the sea star Patiria miniata. Dishevelled is a cytoplasmic Wnt pathway effector required for axis development in diverse species (2–4), but the mechanisms governing its function and distribution remain poorly defined. Using time-lapse imaging, we find that Dishevelled localizes uniformly to puncta throughout the cell cortex in Prophase I-arrested oocytes, but becomes enriched at the vegetal pole following meiotic resumption through a dissolution-reassembly mechanism. This process is driven by an initial disassembly phase of Dvl puncta, followed by selective reformation of Dvl assemblies at the vegetal pole. Rather than being driven by Wnt signaling, this localization behavior is coupled to meiotic cell cycle progression and influenced by Lamp1+ endosome association and Frizzled receptors pre-localized within the oocyte cortex. Our results reveal a cell cycle-linked mechanism by which maternal cellular polarity is transduced to the embryo through spatially-regulated Dishevelled dynamics

    The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification

    No full text
    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32-128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution

    The diversity of nanos expression in echinoderm embryos supports different mechanisms in germ cell specification

    No full text
    Specification of the germ cell lineage is required for sexual reproduction in all animals. However, the timing and mechanisms of germ cell specification is remarkably diverse in animal development. Echinoderms, such as sea urchins and sea stars, are excellent model systems to study the molecular and cellular mechanisms that contribute to germ cell specification. In several echinoderm embryos tested, the germ cell factor Vasa accumulates broadly during early development and is restricted after gastrulation to cells that contribute to the germ cell lineage. In the sea urchin, however, the germ cell factor Vasa is restricted to a specific lineage by the 32-cell stage. We therefore hypothesized that the germ cell specification program in the sea urchin/Euechinoid lineage has evolved to an earlier developmental time point. To test this hypothesis we determined the expression pattern of a second germ cell factor, Nanos, in four out of five extant echinoderm clades. Here we find that Nanos mRNA does not accumulate until the blastula stage or later during the development of all other echinoderm embryos except those that belong to the Echinoid lineage. Instead, Nanos is expressed in a restricted domain at the 32–128 cell stage in Echinoid embryos. Our results support the model that the germ cell specification program underwent a heterochronic shift in the Echinoid lineage. A comparison of Echinoid and non-Echinoid germ cell specification mechanisms will contribute to our understanding of how these mechanisms have changed during animal evolution
    corecore