13 research outputs found

    Divergent Responses of Different Endothelial Cell Types to Infection with Candida albicans and Staphylococcus aureus

    Get PDF
    Endothelial cells are important in the pathogenesis of bloodstream infections caused by Candida albicans and Staphylococcus aureus. Numerous investigations have used human umbilical vein endothelial cells (HUVECs) to study microbial-endothelial cell interactions in vitro. However, the use of HUVECs requires a constant supply of umbilical cords, and there are significant donor-to-donor variations in these endothelial cells. The use of an immortalized endothelial cell line would obviate such difficulties. One candidate in this regard is HMEC-1, an immortalized human dermal microvascular endothelial cell line. To determine if HMEC-1 cells are suitable for studying the interactions of C. albicans and S. aureus with endothelial cells in vitro, we compared the interactions of these organisms with HMEC-1 cells and HUVECs. We found that wild-type C. albicans had significantly reduced adherence to and invasion of HMEC-1 cells as compared to HUVECs. Although wild-type S. aureus adhered to and invaded HMEC-1 cells similarly to HUVECs, an agr mutant strain had significantly reduced invasion of HMEC-1 cells, but not HUVECs. Furthermore, HMEC-1 cells were less susceptible to damage induced by C. albicans, but more susceptible to damage caused by S. aureus. In addition, HMEC-1 cells secreted very little IL-8 in response to infection with either organism, whereas infection of HUVECs induced substantial IL-8 secretion. This weak IL-8 response was likely due to the anatomic site from which HMEC-1 cells were obtained because infection of primary human dermal microvascular endothelial cells with C. albicans and S. aureus also induced little increase in IL-8 production above basal levels. Thus, C. albicans and S. aureus interact with HMEC-1 cells in a substantially different manner than with HUVECs, and data obtained with one type of endothelial cell cannot necessarily be extrapolated to other types

    Relationship of agr Expression and Function with Virulence and Vancomycin Treatment Outcomes in Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus â–¿

    No full text
    The accessory gene regulator (agr) locus has been shown to be important for virulence in several animal models of Staphylococcus aureus infection. However, the role of agr in human infections, and specifically in antibiotic treatment, is controversial. Interestingly, agr dysfunction has been associated with reduced vancomycin responses. To systematically investigate the role of agr in virulence and treatment outcome in the context of endovascular infection, 10 well-characterized vancomycin-susceptible methicillin-resistant S. aureus (MRSA) bloodstream isolates (5 agr-I [clonal complex 45, or CC45] and 5 agr-II [CC5]) were studied for (i) agr function, (ii) RNAIII transcriptional profiles, (iii) agr locus sequences, (iv) intrinsic virulence and responses to vancomycin therapy in an experimental infective endocarditis (IE) model, and (v) in vivo RNAIII expression. Significant differences in agr function (determined by delta-hemolysin activity) correlated with the time point of RNAIII transcription (earlier RNAIII onset equals increased agr function). Unexpectedly, four MRSA strains with strong delta-hemolysin activities exhibited significant resistance to vancomycin treatment in experimental IE. In contrast, five of six MRSA strains with weak or no delta-hemolysin activity were highly susceptible to vancomycin therapy in the IE model. agr sequence analyses showed no common single-nucleotide polymorphism predictive of agr functionality. In vivo RNAIII expression in cardiac vegetations did not correlate with virulence or vancomycin treatment outcomes in the IE model. Inactivation of agr in two strains with strong delta-hemolysin activity did not affect virulence or the in vivo efficacy of vancomycin. Our findings suggest that agr dysfunction does not correlate with vancomycin treatment failures in this experimental IE model in two distinct MRSA genetic backgrounds

    Efficacy of NZ2114, a Novel Plectasin-Derived Cationic Antimicrobial Peptide Antibiotic, in Experimental Endocarditis Due to Methicillin-Resistant Staphylococcus aureus â–¿

    No full text
    Cationic antimicrobial peptides (CAPs) play important roles in host immune defenses. Plectasin is a defensin-like CAP isolated from the saprophytic fungus Pseudoplectania nigrella. NZ2114 is a novel variant of plectasin with potent activity against Gram-positive bacteria. In this study, we investigated (i) the in vivo pharmacokinetic and pharmacodynamic (PK/PD) characteristics of NZ2114 and (ii) the in vivo efficacy of NZ2114 in comparison with those of two conventional antibiotics, vancomycin or daptomycin, in an experimental rabbit infective endocarditis (IE) model due to a methicillin-resistant Staphylococcus aureus (MRSA) strain (ATCC 33591). All NZ2114 regimens (5, 10, and 20 mg/kg of body weight, intravenously [i.v.], twice daily for 3 days) significantly decreased MRSA densities in cardiac vegetations, kidneys, and spleen versus those in untreated controls, except in one scenario (5 mg/kg, splenic MRSA counts). The efficacy of NZ2114 was clearly dose dependent in all target tissues. At 20 mg/kg, NZ2114 showed a significantly greater efficacy than vancomycin (P < 0.001) and an efficacy similar to that of daptomycin. Of importance, only NZ2114 (in 10- and 20-mg/kg regimens) prevented posttherapy relapse in cardiac vegetations, kidneys, and spleen, while bacterial counts in these target tissues continued to increase in vancomycin- and daptomycin-treated animals. These in vivo efficacies were equivalent and significantly correlated with three PK indices investigated: fCmax/MIC (the maximum concentration of the free, unbound fraction of a drug in serum divided by the MIC), fAUC/MIC (where AUC is the area under the concentration-time curve), and f%T>MIC (%T>MIC is the cumulative percentage of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions), as analyzed by a sigmoid maximum-effect (Emax) model (R2 > 0.69). The superior efficacy of NZ2114 in this MRSA IE model suggests the potential for further development of this compound for treating serious MRSA infections

    Combinatorial Phenotypic Signatures Distinguish Persistent from Resolving Methicillin-Resistant Staphylococcus aureus Bacteremia Isolates â–¿

    No full text
    Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia (PB) (positive blood cultures after ≥7 days of therapy) represents a clinically challenging subset of invasive MRSA infections. In this investigation, we examined the potential correlation of specific virulence signatures with PB versus resolving MRSA bacteremia (RB) (negative blood cultures within 2 to 4 days of therapy) strains. Thirty-six MRSA isolates from patients enrolled in a recent multinational clinical trial were studied for (i) susceptibility to host defense cationic peptides (HDPs) (i.e., thrombin-induced platelet microbicidal proteins [tPMPs] and human neutrophil peptide 1 [hNP-1]); (ii) adherence to host endovascular ligands (fibronectin) and cells (endothelial cells); and (iii) biofilm formation. We found that PB isolates exhibited significantly reduced susceptibilities to tPMPs and hNP-1 (P < 0.001 and P = 0.023, respectively). There was no significant association between the PB outcome and fibronectin binding, endothelial cell binding, or biofilm formation (P = 0.25, 0.97, and 0.064 versus RB strains, respectively). However, multiple logistic regression analysis revealed that the PB outcome was significantly associated with the combination of reduced susceptibilities to HDPs and extent of biofilm formation (P < 0.0001). Similar results were obtained in a second analysis using days of bacteremia as a continuous outcome, showing that reduced HDP susceptibilities and increased biofilm formation cocontributed to predict the duration of bacteremia. Our data indicate that PB isolates have specific pathogenic signatures independent of conventional antimicrobial susceptibility. These combinatorial mosaics can be defined and used to prospectively distinguish PB from RB strains in advance and potentially to predict ultimate clinical outcomes

    Endovascular infections caused by methicillin-resistant Staphylococcus aureus are linked to clonal complex-specific alterations in binding and invasion domains of fibronectin-binding protein A as well as the occurrence of fnbB

    No full text
    Submitted by Adagilson Silva ([email protected]) on 2017-09-18T13:25:57Z No. of bitstreams: 1 26416903 2015 xio-end.oa.pdf: 1395222 bytes, checksum: 6bb19e6e755efd7c08aa16c441249ba5 (MD5)Approved for entry into archive by Adagilson Silva ([email protected]) on 2017-09-18T19:57:45Z (GMT) No. of bitstreams: 1 26416903 2015 xio-end.oa.pdf: 1395222 bytes, checksum: 6bb19e6e755efd7c08aa16c441249ba5 (MD5)Made available in DSpace on 2017-09-18T19:57:45Z (GMT). No. of bitstreams: 1 26416903 2015 xio-end.oa.pdf: 1395222 bytes, checksum: 6bb19e6e755efd7c08aa16c441249ba5 (MD5) Previous issue date: 2015-12Fundação Oswaldo Cruz. Instituto Aggeu Magalhães. Recife, PE, BrasilEndovascular infections caused by Staphylococcus aureus involve interactions with fibronectin present as extracellular matrix or surface ligand on host cells. We examined the expression, structure, and binding activity of the two major S. aureus fibronectin-binding proteins (FnBPA, FnBPB) in 10 distinct, methicillin-resistant clinical isolates from patients with either persistent or resolving bacteremia. The persistent bacteremia isolates (n = 5) formed significantly stronger bonds with immobilized fibronectin as determined by dynamic binding measurements performed with atomic force microscopy. Several notable differences were also observed when the results were grouped by clonal complex 5 (CC5) strains (n = 5) versus CC45 strains (n = 5). Fibronectin-binding receptors on CC5 formed stronger bonds with immobilized fibronectin (P < 0.001). The fnbA gene was expressed at higher levels in CC45, whereas fnbB was found in only CC5 isolates. The fnbB gene was not sequenced because all CC45 isolates lacked this gene. Instead, comparisons were made for fnbA, which was present in all 10 isolates. Sequencing of fnbA revealed discrete differences within high-affinity, fibronectin-binding repeats (FnBRs) of FnBPA that included (i) 5-amino-acid polymorphisms in FnBR-9, FnBR-10, and FnBR-11 involving charged or polar side chains, (ii) an extra, 38-amino-acid repeat inserted between FnBR-9 and FnBR-10 exclusively seen in CC45 isolates, and (iii) CC5 isolates had the SVDFEED epitope in FnBR-11 (a sequence shown to be essential for fibronectin binding), while this sequence was replaced in all CC45 isolates with GIDFVED (a motif known to favor host cell invasion at the cost of reduced fibronectin binding). These complementary sequence and binding data suggest that differences in fnbA and fnbB, particularly polymorphisms and duplications in FnBPA, give S. aureus two distinct advantages in human endovascular infections: (i) FnBPs similar to that of CC5 enhance ligand binding and foster initiation of disease, and (ii) CC45-like FnBPs promote cell invasion, a key attribute in persistent endovascular infections

    Endothelial cell stimulation.

    No full text
    <p>IL-8 levels in conditioned media of HUVECs, HMEC-1 cells, and HDMECs were determined 6 h after infection with <i>C. albicans</i> DAY185 (A) and 24 h after infection with <i>S. aureus</i> 6850 (B). Ctrl, uninfected controls; *, <i>p</i><0.05; **, <i>p</i><0.01; and ***, <i>p</i><0.001 in HMEC-1 or HDMEC vs. HUVECs; <sup>†</sup>, <i>p</i><0.05; and <sup>†††</sup>, <i>p</i><0.001 in conditioned media vs. uninfected controls.</p

    Adherence to and invasion of human umbilical vein endothelial cells (HUVECs) vs. HMEC-1 cells by wild-type <i>C. albicans</i> and <i>S. aureus</i>.

    No full text
    <p>Adherence and endocytosis of <i>C. albicans</i> strain CAI4+CIp10 was assessed 1.5 h after infection at a MOI of 1 (A). Adherence and endocytosis of <i>S. aureus</i> strain 6850 was determined 3 h after infection at a MOI of 1 (B). *, <i>p</i><0.05 and ***, <i>p</i><0.001 in HMEC-1 vs. HUVECs.</p
    corecore