26 research outputs found

    Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom

    Get PDF
    Clinical outcome of hyperthermia depends on the achieved target temperature, therefore target conformal heating is essential. Currently, invasive temperature probe measurements are the gold standard for temperature monitoring, however, they only provide limited sparse data. In contrast, magnetic resonance thermometry (MRT) provides unique capabilities to non-invasively measure the 3D-temperature. This study investigates MRT accuracy for MR-hyperthermia hybrid systems located at five European institutions while heating a centric or eccentric target in anthropomorphic phantoms with pelvic and spine structures. Scatter plots, root mean square error (RMSE) and Bland–Altman analysis were used to quantify accuracy of MRT compared to high resistance thermistor probe measurements. For all institutions, a linear relation between MRT and thermistor probes measurements was found with R 2 (mean ± standard deviation) of 0.97 ± 0.03 and 0.97 ± 0.02, respectively for centric and eccentric heating targets. The RMSE was found to be 0.52 ± 0.31 ◦C and 0.30 ± 0.20 ◦C, respectively. The Bland-Altman evaluation showed a mean difference of 0.46 ± 0.20 ◦C and 0.13 ± 0.08 ◦C, respectively. This first multi-institutional evaluation of MR-hyperthermia hybrid systems indicates comparable device performance and good agreement between MRT and thermistor probes measurements. This forms the basis to standardize treatments in multi-institution studies of MR-guided hyperthermia and to elucidate thermal dose-effect relations

    Nosocomial outbreak of neonatal Salmonella enterica serotype Enteritidis meningitis in a rural hospital in northern Tanzania

    Get PDF
    BACKGROUND: Clinicians at Haydom Lutheran Hospital, a rural hospital in northern Tanzania noted an unusually high case-fatality rate of pediatric meningitis and suspected an outbreak of an unknown agent or an organism resistant to the empirical therapy. METHODS: We established a provisional microbiology laboratory to investigate the suspected outbreak. Blood and spinal fluid specimens were taken from children below the age of seven years with suspected meningitis. The blood and spinal fluid specimens were inoculated in commercial blood culture bottles and locally prepared Thayer-Martin medium in slanted tubes, respectively. The bacterial isolates were sent to Norway for further investigation, including susceptibility testing and pulsed-field gel-electrophoresis (PFGE). RESULTS: Among 24 children with suspected meningitis and/or septicemia, five neonates had meningitis caused by Salmonella enterica serotype Enteritidis, all of whom died. Two children had S. Enteritidis septicemia without meningitis and both survived. Genotyping with PFGE suggested a clonal outbreak. The salmonella strain was resistant to ampicillin and sensitive to gentamicin, the two drugs commonly used to treat neonatal meningitis at the hospital. CONCLUSION: The investigation reminds us that nontyphoidal salmonellae can cause meningitis associated with very high case-fatality rates. Resistance to multiple antimicrobial agents increases the risk of treatment failure and may have contributed to the fatal outcome in all of the five patients with salmonella meningitis. The investigation indicated that the outbreak was nosocomial and the outbreak subsided after hygienic measures were instituted. Establishing a provisional microbiological laboratory is a valuable and affordable tool to investigate and control outbreaks even in remote rural areas

    A multi-institution study: comparison of the heating patterns of five different MR-guided deep hyperthermia systems using an anthropomorphic phantom

    Get PDF
    Introduction Within the hyperthermia community, consensus exists that clinical outcome of the treatment radiotherapy and/or chemotherapy plus hyperthermia (i.e. elevating tumor temperature to 40 − 44 °C) is related to the applied thermal dose; hence, treatment quality is crucial for the success of prospective multi-institution clinical trials. Currently, applicator quality assurance (QA) measurements are implemented independently at each institution using basic cylindrical phantoms. A multi-institution comparison of heating quality using magnetic resonance thermometry (MRT) and anatomical representative anthropomorphic phantoms provides a unique opportunity to obtain novel QA insights to f

    Guideline for the clinical application, documentation and analysis of clinical studies for regional deep hyperthermia

    No full text
    These guidelines contain recommendations for the implementation of quality-assured hyperthermia treatments. The objective is to guarantee an internationally comparable and easily understandable method for hyperthermia treatment and for the subsequent scientific analysis of the treatment results. The guidelines describe "regional deep hyperthermia" (RHT) and MR-controlled "partial body hyperthermia" (PBH) of children, adolescents and adult patients. Hyperthermia in terms of these guidelines is defined as a treatment combining chemotherapy and/or radiation therapy. These guidelines are based on practical experience from several hyperthermia centres in Europe. Our collaborative effort has ensured coordinated standards and quality control procedures in regional deep and partial body hyperthermia. The guidelines were developed by the Atzelsberg Research Group of the IAH (http://www.hyperthermie.org) of the German Cancer Society ("Deutsche Krebsgesellschaft") to specifically ensure that the multi-institutional studies initiated by the Atzelsberg Research Group are executed following a single, uniform level of quality. The guidelines contain recommendations for procedural methods for treatment using hyperthermia. They commence with diagnosis, which is followed by preparation and treatment and concludes with standardised analysis for the reporting of result

    Quality Assurance for Clinical Studies in Regional Deep Hyperthermia

    No full text
    Background: A guideline is provided for the implementation of regional deep hyperthermia treatments under strict rules of quality assurance. The objective is to guarantee a comparable and comprehensible method in the treatment and scientific analysis of hyperthermia. The guideline describes regional deep hyperthermia (RHT) and MR-controlled partial body hyperthermia (PBH) of children, young and adult patients. According to this guideline, hyperthermia treatment is always applied in combination with chemotherapy and/or radiotherapy. Methods: The guideline is based on practical experience from several hyperthermia centers. The procedure allows applying jointly coordinated standards and quality control in hyperthermia for studies. Results: The guideline contains recommendations for hyperthermia treatments, including indication, preparation, treatment, and standardized analysis
    corecore