850 research outputs found

    Superconductors with Topological Order

    Full text link
    We propose a mechanism of superconductivity in which the order of the ground state does not arise from the usual Landau mechanism of spontaneous symmetry breaking but is rather of topological origin. The low-energy effective theory is formulated in terms of emerging gauge fields rather than a local order parameter and the ground state is degenerate on topologically non-trivial manifolds. The simplest example of this mechanism of superconductivty is concretely realized as global superconductivty in Josephson junction arrays.Comment: 4 pages, no figure

    Analytical bunch compression studies for a linac-based electron accelerator

    Get PDF
    The current paper deals with analytical bunch compression studies for FLUTE whose results are compared to simulations. FLUTE is a linac-based electron accelerator with a design energy of approximately 40 MeV currently being constructed at the Karlsruhe Institute of Technology. One of the goals of FLUTE is to generate electron bunches with their length lying in the femtosecond regime. In the first phase this will be accomplished using a magnetic bunch compressor. This compressor forms the subject of the studies presented. The paper is divided into two parts. The first part deals with pure geometric investigations of the bunch compressor where space charge effects and the backreaction of bunches with coherent synchrotron radiation are neglected. The second part is dedicated to the treatment of space charge effects. The upshot is that the analytical results in the two parts agree quite well with what is obtained from simulations. This paper shall form the basis for future analytical studies of the FLUTE bunch compressor and of bunch compression, in general

    Density-functional embedding using a plane-wave basis

    Full text link
    The constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortona, Phys. Rev. B {\bf 44}, 8454 (1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {\bf 97}, 8050 (1993)) is applied with a plane-wave basis and both local and non-local pseudopotentials. This method divides the electron density of the system into substrate and embedded electron densities, the sum of which is the electron density of the system of interest. Coupling between the substrate and embedded systems is achieved via approximate kinetic energy functionals. Bulk aluminium is examined as a test case for which there is a strong interaction between the substrate and embedded systems. A number of approximations to the kinetic-energy functional, both semi-local and non-local, are investigated. It is found that Kohn-Sham results can be well reproduced using a non-local kinetic energy functional, with the total energy accurate to better than 0.1 eV per atom and good agreement between the electron densities.Comment: 11 pages, 4 figure

    Multiscale simulations in simple metals: a density-functional based methodology

    Full text link
    We present a formalism for coupling a density functional theory-based quantum simulation to a classical simulation for the treatment of simple metallic systems. The formalism is applicable to multiscale simulations in which the part of the system requiring quantum-mechanical treatment is spatially confined to a small region. Such situations often arise in physical systems where chemical interactions in a small region can affect the macroscopic mechanical properties of a metal. We describe how this coupled treatment can be accomplished efficiently, and we present a coupled simulation for a bulk aluminum system.Comment: 15 pages, 7 figure

    A Novel Optical Beam Concept for Producing Coherent Synchrotron Radiation with Large Energy Spread Beams

    Get PDF
    Up to now two FEL concepts are known in conventional accelerators: 1.) In THz lasers an off-crest cavity adds a chirp to the bunch followed by a bunch compressor. Particles with different energies travel on different trajectories to the radiator. 2.) For EUV and X-ray FELs the beam enters an undulator which produces microbunches which then radiate. In this paper it is proposed to copy the THz laser scheme for EUV lasers. The incoming beam is chirped and a dogleg forces afterwards the particles with different energies to move on different parallel trajectories. Considering a detector plane perpendicular to the trajectories the particles with different energies arrive in general at different times. When in this plane for instance a TGU (Transverse Gradient Undulator) is positioned the emitted radiation in the TGU is monochromatic. If in addition chirp and dogleg are selected in such a way that the particles with different energies arrive at the same time at the entrance of the TGU the radiation is monochromatic and coherent similar to the THz laser concept

    Dynamical Generation of Fermion Mass and Magnetic Field in Three-Dimensional QED with Chern-Simons Term

    Full text link
    We study dynamical symmetry breaking in three-dimensional QED with a Chern-Simons (CS) term, considering the screening effect of NN flavor fermions. We find a new phase of the vacuum, in which both the fermion mass and a magnetic field are dynamically generated, when the coefficient of the CS term Îş\kappa equals Ne2/4Ď€N e^2/4 \pi. The resultant vacuum becomes the finite-density state half-filled by fermions. For Îş=Ne2/2Ď€\kappa=N e^2/2 \pi, we find the fermion remains massless and only the magnetic field is induced. For Îş=0\kappa=0, spontaneous magnetization does not occur and should be regarded as an external field.Comment: 8 pages, no figure, to be published in Phys. Rev. Let

    Left ventricular T1-mapping in diastole versus systole in patients with mitral regurgitation

    Get PDF
    Cardiovascular magnetic resonance T1-mapping enables myocardial tissue characterisation, and is capable of quantifying both intracellular and extracellular volume. T1-mapping is conventionally performed in diastole, however, we hypothesised that systolic readout would reduce variability due to a reduction in myocardial blood volume. This study investigated whether T1-mapping in systole alters T1 values compared to diastole and whether reproducibility alters in atrial fibrillation compared to sinus rhythm. We prospectively identified 103 consecutive patients recruited to the Mitral FINDER study who had T1 mapping in systole and diastole. These patients had moderate or severe mitral regurgitation and a high incidence of ventricular dilatation and atrial fibrillation. T1, ECV and goodness-of-fit (R2) values of the T1 times were calculated offline using Circle cvi42 and in house-developed software. Systolic T1 mapping was associated with fewer myocardial segments being affected by artefact compared to diastolic T1 mapping [217/2472 (9%) vs 515/2472 (21%)]. Mean native T1 values were not significantly different when measured in systole and diastole (985 ± 26 ms vs 988 ± 29 respectively; p = 0.061) and mean post-contrast values showed similar good agreement (462 ± 32 ms vs 459 ± 33 respectively, p = 0.052). No clinically significant differences in ECV, native T1 and post-contrast T1 were identified between diastolic and systolic T1 maps in males versus females, or in patients with permanent atrial fibrillation versus sinus rhythm. A statistically significant improvement in R2 value was observed with systolic over diastolic T1 mapping in all analysed maps (n = 411) (96.2 ± 1.4% vs 96.0 ± 1.4%; p &lt; 0.001) and in subgroup analyses [Sinus rhythm: 96.1 ± 1.4 vs 96.3 ± 1.4 (n = 327); p &lt; 0.001. AF: 95.5 ± 1.3 vs 95.9 ± 1.2 (n = 80); p &lt; 0.001] [Males: 95.8 ± 1.4 vs 96.1 ± 1.3 (n = 264); p &lt; 0.001; Females: 96.2 ± 1.3 vs 96.4 ± 1.4 (n = 143); p = 0.009]. In conclusion, myocardial T1 mapping is associated with similar T1 and ECV values in systole and diastole. Furthermore, systolic acquisition is less prone to gating artefact in arrhythmia.</p

    Higher Derivative CP(N) Model and Quantization of the Induced Chern-Simons Term

    Get PDF
    We consider higher derivative CP(N) model in 2+1 dimensions with the Wess-Zumino-Witten term and the topological current density squared term. We quantize the theory by using the auxiliary gauge field formulation in the path integral method and prove that the extended model remains renormalizable in the large N limit. We find that the Maxwell-Chern-Simons theory is dynamically induced in the large N effective action at a nontrivial UV fixed point. The quantization of the Chern-Simons term is also discussed.Comment: 8 pages, no figure, a minor change in abstract, added Comments on the quantization of the Chern-Simons term whose coefficient is also corrected, and some references are added. Some typos are corrected. Added a new paragraph checking the equivalence between (3) and (5), and a related referenc
    • …
    corecore