168 research outputs found
Heterogeneous Mobile Phone Ownership and Usage Patterns in Kenya
The rapid adoption of mobile phone technologies in Africa is offering exciting opportunities for engaging with high-risk populations through mHealth programs, and the vast volumes of behavioral data being generated as people use their phones provide valuable data about human behavioral dynamics in these regions. Taking advantage of these opportunities requires an understanding of the penetration of mobile phones and phone usage patterns across the continent, but very little is known about the social and geographical heterogeneities in mobile phone ownership among African populations. Here, we analyze a survey of mobile phone ownership and usage across Kenya in 2009 and show that distinct regional, gender-related, and socioeconomic variations exist, with particularly low ownership among rural communities and poor people. We also examine patterns of phone sharing and highlight the contrasting relationships between ownership and sharing in different parts of the country. This heterogeneous penetration of mobile phones has important implications for the use of mobile technologies as a source of population data and as a public health tool in sub-Saharan Africa
Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones.
Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases
Introduction of rubella-containing-vaccine to Madagascar: implications for roll-out and local elimination
Few countries in Africa currently include rubella-containing vaccination (RCV) in their immunization schedule. The Global Alliance for Vaccines Initiative (GAVI) recently opened a funding window that has motivated more widespread roll-out of RCV. As countries plan RCV introductions, an understanding of the existing burden, spatial patterns of vaccine coverage, and the impact of patterns of local extinction and reintroduction for rubella will be critical to developing effective programmes. As one of the first countries proposing RCV introduction in part with GAVI funding, Madagascar provides a powerful and timely case study. We analyse serological data from measles surveillance systems to characterize the epidemiology of rubella in Madagascar. Combining these results with data on measles vaccination delivery, we develop an age-structured model to simulate rubella vaccination scenarios and evaluate the dynamics of rubella and the burden of congenital rubella syndrome (CRS) across Madagascar. We additionally evaluate the drivers of spatial heterogeneity in age of infection to identify focal locations where vaccine surveillance should be strengthened and where challenges to successful vaccination introduction are expected. Our analyses indicate that characteristics of rubella in Madagascar are in line with global observations, with an average age of infection near 7 years, and an impact of frequent local extinction with reintroductions causing localized epidemics. Modelling results indicate that introduction of RCV into the routine programme alone may initially decrease rubella incidence but then result in cumulative increases in the burden of CRS in some regions (and transient increases in this burden in many regions). Deployment of RCV with regular supplementary campaigns will mitigate these outcomes. Results suggest that introduction of RCV offers a potential for elimination of rubella in Madagascar, but also emphasize both that targeted vaccination is likely to be a lynchpin of this success, and the public health vigilance that this introduction will require
Plasmodium falciparum malaria importation from Africa to China and its mortality: an analysis of driving factors
Plasmodium falciparum malaria importation from Africa to China is rising with increasing Chinese overseas investment and international travel. Identifying networks and drivers of this phenomenon as well as the contributors to high case-fatality rate is a growing public health concern to enable efficient response. From 2011–2015, 8653?P. falciparum cases leading to 98 deaths (11.3 per 1000 cases) were imported from 41 sub-Saharan countries into China, with most cases (91.3%) occurring in labour-related Chinese travellers. Four strongly connected groupings of origin African countries with destination Chinese provinces were identified, and the number of imported cases was significantly associated with the volume of air passengers to China (P?=?0.006), parasite prevalence in Africa (P?<?0.001), and the amount of official development assistance from China (P?<?0.001) with investment in resource extraction having the strongest relationship with parasite importation. Risk factors for deaths from imported cases were related to the capacity of malaria diagnosis and diverse socioeconomic factors. The spatial heterogeneity uncovered, principal drivers explored, and risk factors for mortality found in the rising rates of P. falciparum malaria importation to China can serve to refine malaria elimination strategies and the management of cases, and high risk groups and regions should be targeted
Recommended from our members
Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones
Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases
Challenges in evaluating risks and policy options around endemic establishment or elimination of novel pathogens.
When a novel pathogen emerges there may be opportunities to eliminate transmission - locally or globally - whilst case numbers are low. However, the effort required to push a disease to elimination may come at a vast cost at a time when uncertainty is high. Models currently inform policy discussions on this question, but there are a number of open challenges, particularly given unknown aspects of the pathogen biology, the effectiveness and feasibility of interventions, and the intersecting political, economic, sociological and behavioural complexities for a novel pathogen. In this overview, we detail how models might identify directions for better leveraging or expanding the scope of data available on the pathogen trajectory, for bounding the theoretical context of emergence relative to prospects for elimination, and for framing the larger economic, behavioural and social context that will influence policy decisions and the pathogen's outcome
Reconstructing unseen transmission events to infer dengue dynamics from viral sequences.
For most pathogens, transmission is driven by interactions between the behaviours of infectious individuals, the behaviours of the wider population, the local environment, and immunity. Phylogeographic approaches are currently unable to disentangle the relative effects of these competing factors. We develop a spatiotemporally structured phylogenetic framework that addresses these limitations by considering individual transmission events, reconstructed across spatial scales. We apply it to geocoded dengue virus sequences from Thailand (N = 726 over 18 years). We find infected individuals spend 96% of their time in their home community compared to 76% for the susceptible population (mainly children) and 42% for adults. Dynamic pockets of local immunity make transmission more likely in places with high heterotypic immunity and less likely where high homotypic immunity exists. Age-dependent mixing of individuals and vector distributions are not important in determining spread. This approach provides previously unknown insights into one of the most complex disease systems known and will be applicable to other pathogens
Plasmodium falciparum importation does not sustain malaria transmission in a semi-arid region of Kenya
Human movement impacts the spread and transmission of infectious diseases. Recently, a large reservoir of Plasmodium falciparum malaria was identified in a semi-arid region of northwestern Kenya historically considered unsuitable for malaria transmission. Understanding the sources and patterns of transmission attributable to human movement would aid in designing and targeting interventions to decrease the unexpectedly high malaria burden in the region. Toward this goal, polymorphic parasite genes (ama1, csp) in residents and passengers traveling to Central Turkana were genotyped by amplicon deep sequencing. Genotyping and epidemiological data were combined to assess parasite importation. The contribution of travel to malaria transmission was estimated by modelling case reproductive numbers inclusive and exclusive of travelers. P. falciparum was detected in 6.7% (127/1891) of inbound passengers, including new haplotypes which were later detected in locally-transmitted infections. Case reproductive numbers approximated 1 and did not change when travelers were removed from transmission networks, suggesting that transmission is not fueled by travel to the region but locally endemic. Thus, malaria is not only prevalent in Central Turkana but also sustained by local transmission. As such, interrupting importation is unlikely to be an effective malaria control strategy on its own, but targeting interventions locally has the potential to drive down transmission
- …