141 research outputs found

    High Curie temperature and perpendicular magnetic anisotropy in homoepitaxial InMnAs films

    Full text link
    We have prepared the dilute magnetic semiconductor (DMS) InMnAs with different Mn concentrations by ion implantation and pulsed laser melting. The Curie temperature of the In1-xMnxAs epilayer depends on the Mn concentration x, reaching 82 K for x=0.105. The substitution of Mn ions at the Indium sites induces a compressive strain perpendicular to the InMnAs layer and a tensile strain along the in-plane direction. This gives rise to a large perpendicular magnetic anisotropy, which is often needed for the demonstration of electrical control of magnetization and for spin-transfer-torque induced magnetization reversal.Comment: 16 pages, 5 figure

    Electronic structure, magnetic and dielectric properties of the edge-sharing copper-oxide chain compound NaCu2_{2}O2_{2}

    Full text link
    We report an experimental study of \nco, a Mott insulator containing chains of edge-sharing CuO4_4 plaquettes, by polarized x-ray absorption spectroscopy (XAS), resonant magnetic x-ray scattering (RMXS), magnetic susceptibility, and pyroelectric current measurements. The XAS data show that the valence holes reside exclusively on the Cu2+^{2+} sites within the copper-oxide spin chains and populate a dd-orbital polarized within the CuO4_4 plaquettes. The RMXS measurements confirm the presence of incommensurate magnetic order below a N\'eel temperature of TN=11.5T_N = 11.5 K, which was previously inferred from neutron powder diffraction and nuclear magnetic resonance data. In conjunction with the magnetic susceptibility and XAS data, they also demonstrate a new "orbital" selection rule for RMXS that is of general relevance for magnetic structure determinations by this technique. Dielectric property measurements reveal the absence of significant ferroelectric polarization below TNT_N, which is in striking contrast to corresponding observations on the isostructural compound \lco. The results are discussed in the context of current theories of multiferroicity.Comment: 7 pages, 7 figure

    Bandgap narrowing in Mn doped GaAs probed by room-temperature photoluminescence

    Full text link
    The electronic band structure of the (Ga,Mn)As system has been one of the most intriguing problems in solid state physics over the past two decades. Determination of the band structure evolution with increasing Mn concentration is a key issue to understand the origin of ferromagnetism. Here we present room temperature photoluminescence and ellipsometry measurements of Ga_{100%-x}Mn_{x}As alloy. The up-shift of the valence-band is proven by the red shift of the room temperature near band gap emission from the Ga_{100%-x}Mn_{x}As alloy with increasing Mn content. It is shown that even a doping by 0.02 at.% of Mn affects the valence-band edge and it merges with the impurity band for a Mn concentration as low as 0.6 at.%. Both X-ray diffraction pattern and high resolution cross-sectional TEM images confirmed full recrystallization of the implanted layer and GaMnAs alloy formation.Comment: 24 pages, 7 figures, accepted at Phys. Rev. B 201

    Direct observation of t2g orbital ordering in magnetite

    Full text link
    Using soft-x-ray diffraction at the site-specific resonances in the Fe L23 edge, we find clear evidence for orbital and charge ordering in magnetite below the Verwey transition. The spectra show directly that the (001/2) diffraction peak (in cubic notation) is caused by t2g orbital ordering at octahedral Fe2+ sites and the (001) by a spatial modulation of the t2g occupation.Comment: to appear in Phys. Rev. Let

    Iron porphyrin molecules on Cu(001): Influence of adlayers and ligands on the magnetic properties

    Get PDF
    The structural and magnetic properties of Fe octaethylporphyrin (OEP) molecules on Cu(001) have been investigated by means of density functional theory (DFT) methods and X-ray absorption spectroscopy. The molecules have been adsorbed on the bare metal surface and on an oxygen-covered surface, which shows a 2×22R45∘\sqrt{2}\times2\sqrt{2}R45^{\circ} reconstruction. In order to allow for a direct comparison between magnetic moments obtained from sum-rule analysis and DFT we calculate the dipolar term 77, which is also important in view of the magnetic anisotropy of the molecule. The measured X-ray magnetic circular dichroism shows a strong dependence on the photon incidence angle, which we could relate to a huge value of 77, e.g. on Cu(001) 77 amounts to -2.07\,\mbo{} for normal incidence leading to a reduction of the effective spin moment ms+7m_s + 7. Calculations have also been performed to study the influence of possible ligands such as Cl and O atoms on the magnetic properties of the molecule and the interaction between molecule and surface, because the experimental spectra display a clear dependence on the ligand, which is used to stabilize the molecule in the gas phase. Both types of ligands weaken the hybridization between surface and porphyrin molecule and change the magnetic spin state of the molecule, but the changes in the X-ray absorption are clearly related to residual Cl ligands.Comment: 17 figures, full articl

    Functional Genomics for Tolerance to Abiotic Stress in Cereals

    Get PDF
    The world food grain production needs to be doubled by the year 2050 to meet the ever growing demands of the population (Tilman et al., 2002). This goal needs to be achieved despite decreased arable land, dwindling water resources, and the environmental constraints such as drought, water logging, excess heat, frost, salinity, metal toxicity and nutrient imbalances, which cause major losses in cereal grain production. Drought, salinity and cold stress alone are known to cause nearly 35% of cereal crop losses throughout the world (Quarrie et al., 1999). The effectiveness of traditional breeding approaches to deal with the problem is limited due to complex nature of stress tolerance traits and due to incompatibility barriers encountered during transfer of genes from wild species to cultivated ones. Therefore, newer strategies need to be used for developing crop plants tha

    CeRu4_4Sn6_6: a strongly correlated material with nontrivial topology

    Get PDF
    Topological insulators form a novel state of matter that provides new opportunities to create unique quantum phenomena. While the materials used so far are based on semiconductors, recent theoretical studies predict that also strongly correlated systems can show non-trivial topological properties, thereby allowing even the emergence of surface phenomena that are not possible with topological band insulators. From a practical point of view, it is also expected that strong correlations will reduce the disturbing impact of defects or impurities, and at the same increase the Fermi velocities of the topological surface states. The challenge is now to discover such correlated materials. Here, using advanced x-ray spectroscopies in combination with band structure calculations, we infer that CeRu4_4Sn6_6 is a strongly correlated material with non-trivial topology.Comment: 10 pages, 6 figures, submitted to Scientific Report

    The temperature dependent bandstructure of a ferromagnetic semiconductor film

    Full text link
    The electronic quasiparticle spectrum of a ferromagnetic film is investigated within the framework of the s-f model. Starting from the exact solvable case of a single electron in an otherwise empty conduction band being exchange coupled to a ferromagnetically saturated localized spin system we extend the theory to finite temperatures. Our approach is a moment-conserving decoupling procedure for suitable defined Green functions. The theory for finite temperatures evolves continuously from the exact limiting case. The restriction to zero conduction band occupation may be regarded as a proper model description for ferromagnetic semiconductors like EuO and EuS. Evaluating the theory for a simple cubic film cut parallel to the (100) crystal plane, we find some marked correlation effects which depend on the spin of the test electron, on the exchange coupling, and on the temperature of the local-moment system.Comment: 11 pages, 9 figure

    Connection between charge-density-wave order and charge transport in the cuprate superconductors

    Get PDF
    Charge-density-wave (CDW) correlations within the quintessential CuO2_2 planes have been argued to either cause [1] or compete with [2] the superconductivity in the cuprates, and they might furthermore drive the Fermi-surface reconstruction in high magnetic fields implied by quantum oscillation (QO) experiments for YBa2_2Cu3_3O6+δ_{6+{\delta}} (YBCO) [3] and HgBa2_2CuO4+δ_{4+{\delta}} (Hg1201) [4]. Consequently, the observation of bulk CDW order in YBCO was a significant development [5,6,7]. Hg1201 features particularly high structural symmetry and recently has been demonstrated to exhibit Fermi-liquid charge transport in the relevant temperature-doping range of the phase diagram, whereas for YBCO and other cuprates this underlying property of the CuO2_2 planes is partially or fully masked [8-10]. It therefore is imperative to establish if the pristine transport behavior of Hg1201 is compatible with CDW order. Here we investigate Hg1201 (TcT_c = 72 K) via bulk Cu L-edge resonant X-ray scattering. We indeed observe CDW correlations in the absence of a magnetic field, although the correlations and competition with superconductivity are weaker than in YBCO. Interestingly, at the measured hole-doping level, both the short-range CDW and Fermi-liquid transport appear below the same temperature of about 200 K. Our result points to a unifying picture in which the CDW formation is preceded at the higher pseudogap temperature by qq = 0 magnetic order [11,12] and the build-up of significant dynamic antiferromagnetic correlations [13]. Furthermore, the smaller CDW modulation wave vector observed for Hg1201 is consistent with the larger electron pocket implied by both QO [4] and Hall-effect [14] measurements, which suggests that CDW correlations are indeed responsible for the low-temperature QO phenomenon
    • …
    corecore