5,087 research outputs found

    Remote sensing study of land use and sedimentation in the Ross Barnett Reservoir, Jackson, Mississippi area

    Get PDF
    This multi-year study is aimed at focusing on the recognition of sediment and other affluents in a selected area of the Ross Barnett Reservoir. The principle objectives are the determination of land use types, effect of land use on erosion, and the correlation of sediment with land use in the area. The I2S multi-band imagery was employed in conjunction with ground truth data for both water and land use studies. The selected test site contains approximately forty square miles including forest, open land, and water in addition to residential and recreational areas

    Estimation of Spin-Spin Interaction by Weak Measurement Scheme

    Full text link
    Precisely knowing an interaction Hamiltonian is crucial to realize quantum information tasks, especially to experimentally demonstrate a quantum computer and a quantum memory. We propose a scheme to experimentally evaluate the spin-spin interaction for a two-qubit system by the weak measurement technique initiated by Yakir Aharonov and his colleagues. Furthermore, we numerically confirm our proposed scheme in a specific system of a nitrogen vacancy center in diamond. This means that the weak measurement can also be taken as a concrete example of the quantum process tomography.Comment: 4 pages, 1 table, 2 figures, to appear in Europhysics Letter

    An earth pole-sitter using hybrid propulsion

    Get PDF
    In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft

    Development of high temperature refractory-based multi-principle-component alloys by thermodynamic calculations and rapid alloy prototyping

    Get PDF
    Recently, new refractory-based high entropy alloys (HEAs) have been investigated for potential use as high temperature structural alloys, and some alloys exhibit excellent high temperature strength and ductility. While the high entropy alloy community is generally concerned with obtaining single phase solid-solution phases, secondary strengthening phases are usually required to achieve an adequate balance of mechanical and physical properties for structural applications. This contribution will report on new Mo,Nb-based alloys that have been developed using HEA design guidelines, as well as new tools that enable thermodynamic property predictions and rapid alloy prototyping and assessment. An elemental palette of Mo-Nb-Hf-Ta-Ti-V-W-Zr was chosen in order to promote the formation of a single body-centered cubic (BCC) solid-solution phase upon solidification, which facilitates homogenization heat treatments. Al, Cr, and Si were also included to promote secondary phase formation. These 11 elements were then used to calculate the phases present and their reaction temperatures of 3-, 4-, 5-, and 6-component alloy compositions from all of the available PandatTM databases. Mo and Nb were required to be present in each alloy composition in order to maintain modest alloy costs and densities. Please click Additional Files below to see the full abstract

    Displaced geostationary orbits using hybrid low-thrust propulsion

    Get PDF
    In this paper, displaced geostationary orbits using hybrid low-thrust propulsion, a complementary combination of Solar Electric Propulsion (SEP) and solar sailing, are investigated to increase the capacity of the geostationary ring that is starting to become congested. The SEP propellant consumption is minimized in order to maximize the mission lifetime by deriving semi-analytical formulae for the optimal steering laws for the SEP and solar sail accelerations. By considering the spacecraft mass budget, the performance is also expressed in terms of payload mass capacity. The analyses are performed both for the use of pure SEP and hybrid low-thrust propulsion to allow for a comparison. It is found that hybrid low-thrust control outperforms the pure SEP case both in terms of payload mass capacity and mission lifetime for all displacements considered. Hybrid low-thrust propulsion enables payloads of 255 to 487 kg to be maintained in a 35 km displaced orbit for 10 to 15 years. Adding the influence of the J2 and J22 terms of the Earth’s gravity field has a small effect on this lifetime, which becomes almost negligible for small values of the sail lightness number. Finally, two SEP transfers that allow for an improvement in the performance of hybrid low-thrust control are optimized for the propellant consumption by solving the accompanying optimal control problem using a direct pseudospectral method. The first type of transfer enables a transit between orbits displaced above and below the equatorial plane, while the second type of transfer enables customized service for which a spacecraft is transferred to a Keplerian parking orbit when geostationary coverage is not needed. While the latter requires a modest propellant budget, the first type of transfer comes at the cost of an almost negligible SEP propellant consumption

    The Influence of Maternal Energy Status During Mid‐gestationon Beef Offspring Carcass Characteristics and Meat Quality

    Get PDF
    Research has suggested that maternal under‐nutrition may cause the development of a thrifty phenotype in the offspring, potentially resulting in greater adiposity and reduced muscle mass. These alterations in fat and muscle development could have lasting impacts on offspring growth, carcass characteristics, and meat quality. Thus, the objective of this study was to determine the influence of maternal energy status during mid‐gestation on offspring carcass characteristics and meat quality. To alter maternal energy status, cows either grazed pasture or were fed in a dry‐lot at 80% of the energy requirements for body weight maintenance during a mean period of 109 to 207 d of gestation. Changes in body condition score (BCS), body weight, ribeye area (REA), and 12th rib backfat were measured throughout mid‐gestation and were used to determine cow energy status [Positive (PES) or Negative (NES)]. Cows in the NES group had a significantly greater reduction in BCS, body weight, REA, and 12th rib backfat during mid‐gestation. Maternal energy status had no influence on offspring hot carcass weight, dressing percent, REA, percent kidney, pelvic, and heart fat, marbling score, percent intramuscular fat, objective color, or Warner‐Bratzler shear force. A tendency was seen for NES calves to have improvements in 12th rib backfat and USDA Yield Grade. A greater MRatio and IRatio (calculations used to compare the ratio of marbling (MRatio) and percent intramuscular fat (IRatio) with 12th rib backfat) were discovered in calves from cows experiencing a negative energy status during midgestation. These results suggest that maternal energy status during mid‐gestation may impact fat deposition in intramuscular and subcutaneous fat depots without impacting muscle mass
    corecore