103 research outputs found

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Local biases drive, but do not determine, the perception of illusory trajectories

    Get PDF
    When a dot moves horizontally across a set of tilted lines of alternating orientations, the dot appears to be moving up and down along its trajectory. This perceptual phenomenon, known as the slalom illusion, reveals a mismatch between the veridical motion signals and the subjective percept of the motion trajectory, which has not been comprehensively explained. In the present study, we investigated the empirical boundaries of the slalom illusion using psychophysical methods. The phenomenon was found to occur both under conditions of smooth pursuit eye movements and constant fixation, and to be consistently amplified by intermittently occluding the dot trajectory. When the motion direction of the dot was not constant, however, the stimulus display did not elicit the expected illusory percept. These findings confirm that a local bias towards perpendicularity at the intersection points between the dot trajectory and the tilted lines cause the illusion, but also highlight that higher-level cortical processes are involved in interpreting and amplifying the biased local motion signals into a global illusion of trajectory perception

    Reliability in the Identification of Midbrain Dopamine Neurons

    Get PDF
    Brain regions typically contain intermixed subpopulations of neurons with different connectivity and neurotransmitters. This complicates identification of neuronal phenotypes in electrophysiological experiments without using direct detection of unique molecular markers. A prime example of this difficulty is the identification of dopamine (DA) neurons in the midbrain ventral tegmental area (VTA). Although immunocytochemistry (ICC) against tyrosine hydroxylase (TH) is widely used to identify DA neurons, a high false negative rate for TH ICC following ex vivo electrophysiology experiments was recently reported, calling into question the validity of comparing DA and non-DA VTA neurons based on post-hoc ICC. However, in whole cell recordings from randomly selected rat VTA neurons we have found that TH labeling is consistently detected in ∼55% of neurons even after long recording durations (range: 2.5–150 min). This is consistent with our prior anatomical finding that 55% of VTA neurons are TH(+). To directly estimate a false negative rate for our ICC method we recorded VTA neurons from mice in which EGFP production is driven by the TH promoter. All 12 EGFP(+) neurons recorded with a K-gluconate internal solution (as used in our rat recordings) were strongly labeled by TH ICC (recording duration 16.6±1.8 min). However, using recording electrodes with an internal solution with high Cl− concentration reduced the intensity of TH co-labeling, in some cases to background (recording duration 16.7±0.9 min; n = 10). Thus TH is a highly reliable molecular marker for DA neurons in VTA patch clamp recordings provided compatible microelectrode solutions are used

    The global distribution of the Duffy blood group

    Get PDF
    Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*BES variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export

    Get PDF
    Eukaryotic ribosomes are assembled by a complex pathway that extends from the nucleolus to the cytoplasm and is powered by many energy-consuming enzymes (1-3). Nuclear export is a key, irreversible step in pre-ribosome maturation(4-8), but mechanisms underlying the timely acquisition of export competence remain poorly understood. Here we show that a conserved GTPase Nug2/Nog2 (called NGP-1, Gnl2 or nucleostemin 2 in human(9)) plays a key role in the timing of export competence. Nug2 binds the inter-subunit face of maturing, nucleoplasmic pre-60S particles, and the location clashes with the position of Nmd3, a key pre-60S export adaptor(10). Nug2 and Nmd3 are not present on the same pre-60S particles, with Nug2 binding prior to Nmd3. Depletion of Nug2 causes premature Nmd3 binding to the pre-60S particles, whereas mutations in the G-domain of Nug2 block Nmd3 recruitment, resulting in severe 60S export defects. Two pre-60S remodeling factors, the Rea1 ATPase and its co-substrate Rsa4, are present on Nug2-associated particles, and both show synthetic lethal interactions with nug2 mutants. Release of Nug2 from pre-60S particles requires both its K(+)-dependent GTPase activity and the remodeling ATPase activity of Rea1. We conclude that Nug2 is a regulatory GTPase that monitors pre-60S maturation, with release from its placeholder site linked to recruitment of the nuclear export machinery
    corecore