1,311 research outputs found

    Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy

    Get PDF
    Narcolepsy with cataplexy (NC) is a complex sleep-wake disorder, which was recently found to be associated with a reduction or loss of hypocretin (HCRT, also called orexin). HCRT is a hypothalamic peptide implicated in the regulation of sleep/wake, motor and feeding functions. Cataplexy refers to episodes of sudden and transient loss of muscle tone triggered by strong, mostly positive emotions, such as hearing or telling jokes. Cataplexy is thought to reflect the recruitment of ponto-medullary mechanisms that normally underlie muscle atonia during REM-sleep. In contrast, the suprapontine brain mechanisms associated with the cataplectic effects of emotions in human narcolepsy with cataplexy remain essentially unknown. Here, we used event-related functional MRI to assess brain activity in 12 NC patients and 12 controls while they watched sequences of humourous pictures. Patients and controls were similar in humour appreciation and activated regions known to contribute to humour processing, including limbic and striatal regions. A direct statistical comparison between patients and controls revealed that humourous pictures elicited reduced hypothalamic response together with enhanced amygdala response in the patients. These results suggest (i) that hypothalamic HCRT activity physiologically modulates the processing of emotional inputs within the amygdala, and (ii) that suprapontine mechanisms of cataplexy involve a dysfunction of hypothalamic-amygdala interactions triggered by positive emotion

    Reconstructing Dryopteris “semicristata” (Dryopteridaceae): Molecular profiles of tetraploids verify their undiscovered diploid ancestor

    Get PDF
    This is the publisher's version, also available electronically from http://www.amjbot.org.• Premise of the study: Discovering missing ancestors is essential to understanding the evolutionary history of biodiversity on Earth. Evidence from extinct species can provide links for reconstructing intricate patterns of reticulate relationships among extant descendents. When fossils are unavailable and other evidence yields competing hypotheses to explain species ancestry, data from proteins and DNA can help resolve conflicts and generate novel perspectives. The identity of a parent shared by two tetraploid species in the cosmopolitan fern genus Dryopteris has remained elusive for more than 50 years. Based on available data, four hypotheses were developed previously, each providing a different resolution to this uncertainty. • Methods: New molecular evidence from studies of isozymes and restriction site analysis of chloroplast DNA tested the competing hypotheses about the diploid ancestors of these two extant Dryopteris polyploids. • Key results: The results falsify two of the hypotheses, resolve the uncertainty in the third, and support the fourth. • Conclusions: Our data validate the prior existence of Dryopteris “semicristata,” which was proposed 38 years ago as a diploid progenitor of the allotetraploids D. cristata and D. carthusiana but has never been collected. After developing a phylogeny using the new molecular data, we describe a plausible morphology for D. “semicristata” by extrapolating likely character states from related extant species

    Penning traps as a versatile tool for precise experiments in fundamental physics

    Full text link
    This review article describes the trapping of charged particles. The main principles of electromagnetic confinement of various species from elementary particles to heavy atoms are briefly described. The preparation and manipulation with trapped single particles, as well as methods of frequency measurements, providing unprecedented precision, are discussed. Unique applications of Penning traps in fundamental physics are presented. Ultra-precise trap-measurements of masses and magnetic moments of elementary particles (electrons, positrons, protons and antiprotons) confirm CPT-conservation, and allow accurate determination of the fine-structure constant alpha and other fundamental constants. This together with the information on the unitarity of the quark-mixing matrix, derived from the trap-measurements of atomic masses, serves for assessment of the Standard Model of the physics world. Direct mass measurements of nuclides targeted to some advanced problems of astrophysics and nuclear physics are also presented

    Combined ion and atom trap for low temperature ion-atom physics

    Full text link
    We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently of each other. The simultaneous operation of both is then described and experimental signatures of the effect of the ions and cold-atoms on each other are presented. In conclusion the use of such an instrument for several problems in physics and chemistry is briefly discussed.Comment: 24 pages, 13 figures. Figures Fixe

    High-accuracy Penning trap mass measurements with stored and cooled exotic ions

    Full text link
    The technique of Penning trap mass spectrometry is briefly reviewed particularly in view of precision experiments on unstable nuclei, performed at different facilities worldwide. Selected examples of recent results emphasize the importance of high-precision mass measurements in various fields of physics

    HITRAP: A facility at GSI for highly charged ions

    Full text link
    An overview and status report of the new trapping facility for highly charged ions at the Gesellschaft fuer Schwerionenforschung is presented. The construction of this facility started in 2005 and is expected to be completed in 2008. Once operational, highly charged ions will be loaded from the experimental storage ring ESR into the HITRAP facility, where they are decelerated and cooled. The kinetic energy of the initially fast ions is reduced by more than fourteen orders of magnitude and their thermal energy is cooled to cryogenic temperatures. The cold ions are then delivered to a broad range of atomic physics experiments.Comment: 8 pages, 11 figure

    Sodium oxybate in narcolepsy with cataplexy: Zurich sleep center experience

    Full text link
    Sodium oxybate (SO; Xyrem®) has been approved in most countries for treatment of narcolepsy and cataplexy. In this study, we present a single-center experience of a series of 18 patients with narcolepsy with cataplexy (18/18 DQB1*0602 positive, 17/17 with low/absent cerebrospinal fluid hypocretin) in whom SO was prescribed. After 26 ± 13 months, 13/18 patients were still on SO at a mean dosage of 6.1 ± 1.2 g (in 8 of them in combination with stimulants). The following significant effects were observed: improved subjective sleepiness (12/13), cataplexy (13/13; median number of attacks from 20 to 1/month), hallucinations (8/10) and sleep paralysis (8/8); increase in mean sleep latency on the Maintenance of Wakefulness Test (from 5.5 to 17.4 min) and sleep/rest efficiency on actigraphy (from 61 to 76%); decrease in Epworth Sleepiness Scale score (from 18 to 14), sleep onset REM periods on the Multiple Sleep Latency Test (from 3.6 to 2.4) and errors in the Steer-Clear Test (from 11 to 2%). Five patients discontinued SO because of insufficient compliance (n = 2), lack of efficiency (n = 1) and side effects (n = 1). These data confirm and expand previous reports on the good effects and tolerability of SO as a treatment for narcolepsy with cataplexy

    Ultraviolet Irradiation Induces the Accumulation of Chondroitin Sulfate, but Not Other Glycosaminoglycans, in Human Skin

    Get PDF
    Ultraviolet (UV) light alters cutaneous structure and function. Prior work has shown loss of dermal hyaluronan after UV-irradiation of human skin, yet UV exposure increases total glycosaminoglycan (GAG) content in mouse models. To more fully describe UV-induced alterations to cutaneous GAG content, we subjected human volunteers to intermediate-term (5 doses/week for 4 weeks) or single-dose UV exposure. Total dermal uronyl-containing GAGs increased substantially with each of these regimens. We found that UV exposure substantially increased dermal content of chondroitin sulfate (CS), but not hyaluronan, heparan sulfate, or dermatan sulfate. UV induced the accumulation of both the 4-sulfated (C4S) and 6-sulfated (C6S) isoforms of CS, but in distinct distributions. Next, we examined several CS proteoglycan core proteins and found a significant accumulation of dermal and endothelial serglycin, but not of decorin or versican, after UV exposure. To examine regulation in vitro, we found that UVB in combination with IL-1α, a cytokine upregulated by UV radiation, induced serglycin mRNA in cultured dermal fibroblasts, but did not induce the chondroitin sulfate synthases. Overall, our data indicate that intermediate-term and single-dose UVB exposure induces specific GAGs and proteoglycan core proteins in human skin in vivo. These molecules have important biologic functions and contribute to the cutaneous response to UV

    Fabrication of a planar micro Penning trap and numerical investigations of versatile ion positioning protocols

    Full text link
    We describe a versatile planar Penning trap structure, which allows to dynamically modify the trapping conguration almost arbitrarily. The trap consists of 37 hexagonal electrodes, each with a circumcirle-diameter of 300 m, fabricated in a gold-on-sapphire lithographic technique. Every hexagon can be addressed individually, thus shaping the electric potential. The fabrication of such a device with clean room methods is demonstrated. We illustrate the variability of the device by a detailed numerical simulation of a lateral and a vertical transport and we simulate trapping in racetrack and articial crystal congurations. The trap may be used for ions or electrons, as a versatile container for quantum optics and quantum information experiments.Comment: 10 pages, 7 figures, pdflatex, to be published in New Journal of Physics (NJP) various changes according to the wishes of the NJP referees. Text added and moved around, title changed, abstract changed, references added rev3: one reference had a typo (ref 15), fixed (phys rev a 72, not 71

    g factor of Li-like ions with nonzero nuclear spin

    Full text link
    The fully relativistic theory of the g factor of Li-like ions with nonzero nuclear spin is considered for the (1s)^2 2s state. The magnetic-dipole hyperfine-interaction correction to the atomic g factor is calculated including the one-electron contributions as well as the interelectronic-interaction effects of order 1/Z. This correction is combined with the interelectronic-interaction, QED, nuclear recoil, and nuclear size corrections to obtain high-precision theoretical values for the g factor of Li-like ions with nonzero nuclear spin. The results can be used for a precise determination of nuclear magnetic moments from g factor experiments.Comment: 20 pages, 5 figure
    corecore