9 research outputs found

    Infektionsabwehr und lymphatischer Rachenring

    Get PDF
    Foraging behaviours used by two female Australian fur seals (Arctocephalus pusillus doriferus) were documented during controlled feeding trials. During these trials the seals were presented with prey either free-floating in open water or concealed within a mobile ball or a static box feeding device. When targeting free-floating prey both subjects primarily used raptorial biting in combination with suction, which was used to draw prey to within range of the teeth. When targeting prey concealed within either the mobile or static feeding device, the seals were able to use suction to draw out prey items that could not be reached by biting. Suction was followed by lateral water expulsion, where water drawn into the mouth along with the prey item was purged via the sides of the mouth. Vibrissae were used to explore the surface of the feeding devices, especially when locating the openings in which the prey items had been hidden. The mobile ball device was also manipulated by pushing it with the muzzle to knock out concealed prey, which was not possible when using the static feeding device. To knock prey out of this static device one seal used targeted bubble blowing, where a focused stream of bubbles was blown out of the nose into the openings in the device. Once captured in the jaws, prey items were manipulated and re-oriented using further mouth movements or chews so that they could be swallowed head first. While most items were swallowed whole underwater, some were instead taken to the surface and held in the teeth, while being vigorously shaken to break them into smaller pieces before swallowing. The behavioural flexibility displayed by Australian fur seals likely assists in capturing and consuming the extremely wide range of prey types that are targeted in the wild, during both benthic and epipelagic foraging

    Development and validation of oxide/oxide CMC combustors within the HiPOC program

    No full text
    In the framework of the High Performance Oxide Ceramics program (HiPOC), three different oxide/oxide ceramic matrix composite (CMC) materials are studied for a combustion chamber application in continuation of the work reported in Gerendas et al. [1]. A variation in the micro-structural design of the three CMC materials in terms of different fiber architecture and matrix processing are considered in a first work stream. By modification of the matrix and the fiber-matrix interface as well as the application of an environmental barrier coating (EBC), the high temperature stability is enhanced. Furthermore, design concepts for the attachment of the CMC component to the metal structure of the engine are finalized in a second work stream. Issues like sealing of cooling leakage paths, allowance for the different thermal expansion and the mechanical fixation are addressed. An interim standard of the mechanical attachment scheme is studied on a shaker table. Also the friction coefficient between the metallic and ceramic components is analyzed in order to set the proper tightening torque. The manufacturing of the CMC combustor is improved in several iterations in order to achieve a high quality material with optimized fiber architecture. Afterwards, two CMC materials are selected for the combustion testing and the finalized design of the metallic and CMC components is manufactured. A fit check is performed prior to EBC application and laser drilling of the effusion holes in order to evaluate the impact of the manufacturing tolerances on the function of the sealing and attachment scheme and to correct small issues at this stage. First results from the validation testing in a high-pressure tubular combustion rig up to a Technology Readiness Level 4 (TRL4) are reported.</jats:p

    Conceptualisation: Interactions between Language, Mind, and World. An Introduction to Theory and History of Concepts

    No full text

    Quellen- und Literaturverzeichnis

    No full text
    corecore