51 research outputs found

    Selection on Alleles Affecting Human Longevity and Late-Life Disease: The Example of Apolipoprotein E

    Get PDF
    It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E) and non-genetic risk factors (gender, diet, smoking, alcohol, exercise) that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the ε2 and ε3 alleles of the gene at the expense of the ε4 allele was predicted from the model. The ε2 allele frequency was found to increase slightly more rapidly than that for ε3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity

    Aptamers for pharmaceuticals and their application in environmental analytics

    Get PDF
    Aptamers are single-stranded DNA or RNA oligonucleotides, which are able to bind with high affinity and specificity to their target. This property is used for a multitude of applications, for instance as molecular recognition elements in biosensors and other assays. Biosensor application of aptamers offers the possibility for fast and easy detection of environmental relevant substances. Pharmaceutical residues, deriving from human or animal medical treatment, are found in surface, ground, and drinking water. At least the whole range of frequently administered drugs can be detected in noticeable concentrations. Biosensors and assays based on aptamers as specific recognition elements are very convenient for this application because aptamer development is possible for toxic targets. Commonly used biological receptors for biosensors like enzymes or antibodies are mostly unavailable for the detection of pharmaceuticals. This review describes the research activities of aptamer and sensor developments for pharmaceutical detection, with focus on environmental applications

    Post-storm beach and dune recovery: Implications for barrier island resilience

    No full text
    The ability of beaches and dunes to recover following an extreme storm is a primary control of barrier island response to sea-level rise and changes in the frequency and/or magnitude of storm surges. Whereas erosion of the beach and dune occurs over hours and days, it can be years to decades before the beach and dune are able to recover to their pre-storm state. As a consequence, there are numerous descriptions of near-instantaneous beach and dune erosion due to storms, the immediate onshore transport of sand, and the initial phases of beach and dune recovery following a storm, but a paucity of data on long-term beach and dune recovery. A combination of previously published data from Galveston Island, Texas and new remotely sensed data from Santa Rosa Island, Florida is used in the present study to quantify the rate of dune recovery for dissipative and intermediate beach types, respectively. Recovery of the dune height and volume on Galveston Island was observed within two years following Hurricane Alicia (1983) and was largely complete within six years of the storm, despite extensive washover. In contrast, the dunes on Santa Rosa Island in Northwest Florida began to recover four years after Hurricane Ivan (2004), and only after the profile approached its pre-storm level and the rate of vegetation recovery (regrowth) was at a maximum. Results show that complete recovery of the largest dunes (in height and volume) will take approximately 10. years on Santa Rosa Island, which suggests that these sections of the island are particularly vulnerable to significant change in island morphology if there is also a change in the frequency and magnitude of storm events. In contrast, the areas of the island with the smallest dunes before Hurricane Ivan exhibited a rapid recovery, but no further growth in profile volume and dune height beyond the pre-storm volume and height, despite continued recovery of the largest dunes to their pre-storm height. A change in storm magnitude and/or frequency is a potential threat to barrier island resilience, particularly for those sections of the island where dune recovery has historically taken the longest time. Further study is required to determine how and why dune recovery varies for the dissipative and intermediate beaches of Galveston Island and Santa Rosa Island, respectively. © 2015 Elsevier B.V

    The Critical Zone of Coastal Barrier Systems

    No full text
    Barrier Islands represent some of the most dynamic and complex systems within the Critical Zone worldwide. Although coastal systems tend not to be recognized as Critical Zone environments, the evolution of Barrier Islands and the ecological functions they provide can be characterized in terms of a complex feedback among sediment supply (lithosphere), hydrology, the atmosphere, and ecology (biosphere). This represents an interesting departure from the traditional view of Barrier Island evolution (either regression or transgression) as a result of variations in sea level, sediment supply, and accommodation space. This chapter takes a Critical Zone approach to the response of Barrier Island evolution to sea-level rise and storm activity, explicitly recognizing the feedback among sediment supply, aeolian transport, disturbance regimes, vegetation development, and hydrology. © 2015 Elsevier B.V

    Regulation of carbohydrate metabolism by 2,5-anhydro-D-mannitol.

    No full text

    Glycosylation of human apolipoprotein E. The carbohydrate attachment site is threonine 194

    No full text
    The glycosylation of human apolipoprotein (apo) E was examined with purified plasma apoE and apoE produced by transfected cell lines. The carbohydrate attachment site of plasma apoE was localized to a single tryptic peptide (residues 192-206). Sequence analysis and amino sugar analysis of this peptide derived from asialo-, monosialo-, or disialo-apoE indicated that the carbohydrate moiety is attached only to Thr194 in monosialo- and disialo-apoE and that asialo-apoE is not glycosylated. Mammalian cells that normally do not express apoE were transfected with human apoE plasmid expression vectors to test the utilization of potential carbohydrate attachment sites and the role of apoE glycosylation in secretion. Site-specific mutants of apoE, designed to eliminate or alter glycosylation sites, were expressed in HeLa cells by acute transfection. Apolipoprotein E(Thr194----Ala) was secreted exclusively as the asialo isoform, confirming that Thr194 is the site of carbohydrate attachment in these cells and indicating that glycosylation of apoE is not essential for secretion. Apolipoprotein E(Thr194----Asn,Gly196----Ser), which introduces a potential site for N-glycosylation at position 194, was secreted with a higher apparent molecular weight than native, O-glycosylated apoE. Studies with tunicamycin indicated that this apoE was N-glycosylated at Asn194. Stably transfected cell lines expressing human apoE were prepared from wild-type Chinese hamster ovary (CHO) cells and from CHO ldlD cells, which are defective in glycosylation. The transfected wild-type cells secreted multiply sialylated apoE. The transfected ldlD cells also secreted high levels of apoE even in the absence of glycosylation, which confirms that glycosylation is not essential for secretion of apoE
    corecore