57 research outputs found
Radiative electron capture in the first forbidden unique decay of 81Kr
The photon spectrum accompanying the orbital K-electron capture in the first
forbidden unique decay of 81Kr was measured. The total radiation intensity for
the photon energies larger than 50 keV was found to be 1.47(6) x 10^{-4} per
K-capture. Both the shape of the spectrum and its intensity relative to the
ordinary, non-radiative capture rate, are compared to theoretical predictions.
The best agreement is found for the recently developed model which employs the
length gauge for the electromagnetic field.Comment: 7 pages, 6 figure
Core-coupled states and split proton-neutron quasi-particle multiplets in 122-126Ag
Neutron-rich silver isotopes were populated in the fragmentation of a 136Xe
beam and the relativistic fission of 238U. The fragments were mass analyzed
with the GSI Fragment separator and subsequently implanted into a passive
stopper. Isomeric transitions were detected by 105 HPGe detectors. Eight
isomeric states were observed in 122-126Ag nuclei. The level schemes of
122,123,125Ag were revised and extended with isomeric transitions being
observed for the first time. The excited states in the odd-mass silver isotopes
are interpreted as core-coupled states. The isomeric states in the even-mass
silver isotopes are discussed in the framework of the proton-neutron split
multiplets. The results of shell-model calculations, performed for the most
neutron-rich silver nuclei are compared to the experimental data
- …