2,266 research outputs found

    Preparation of Neurospora crassa mitochondria

    Get PDF
    The fungus Neurospora crassa represents a eukaryotic cell with high biosynthetic activities. Cell mass doubles in 2-4 hr during expone ntial growth , even in simple salt media with sucrose as the sole carbon source. The microorgani sm forms a mycelium of long hyphae durlng vegetative growth . The mitochondria can be isolated under relatively gentle condi tions since a few breaks in the threadlike hyphae are sufficient to cause the outflow of the organelles. This article describes two methods for the physical disruption of the hyphae : (I) The cell s are opened in a grind mill between two rotating corundum di sks. This is a continuous and fast procedure and allows large- and small-scale preparations of mitochondria. (2) Hyphae are ground with sand in a mortar and pestle. This procedure can be applied to microscale preparations of mitochondria starting with minute amounts of cells. Other procedures for the isolation of Neurospora mitochondria after the physical di sruption or the enzymatic degradation of the cell wall have been described elsewher

    The CoRoT discovery of a unique triple-mode cepheid in the galaxy

    Full text link
    The exploitation of the CoRoT treasure of stars observed in the exoplanetary field allowed the detection of a unusual triple-mode Cepheid in the Milky Way, CoRoT 0223989566. The two modes with the largest amplitudes and period ratio of 0.80 are identified with the first (P1=1.29 d) and second (P2=1.03 d) radial overtones. The third period, which has the smallest amplitude but able to produce combination terms with the other two, is the longest one (P3=1.89 d). The ratio of 0.68 between the first-overtone period and the third period is the unusual feature. Its identification with the fundamental radial or a nonradial mode is discussed with respect to similar cases in the Magellanic Clouds. In both cases the period triplet and the respective ratios make the star unique in our Galaxy. The distance derived from the period-luminosity relation and the galactic coordinates put CoRoT~0223989566 in the metal-rich environment of the "outer arm" of the Milky Way.Comment: Published as ApJ Lette

    Tunneling Anisotropic Spin Polarization in lateral (Ga,Mn)As/GaAs spin Esaki diode devices

    Get PDF
    We report here on anisotropy of spin polarization obtained in lateral all-semiconductor all-electrical spin injection devices, employing p+p^{+}-(Ga,Mn)As/n+n^{+}-GaAs Esaki diode structures as spin aligning contacts, resulting from the dependence of the efficiency of spin tunneling on the orientation of spins with respect to different crystallographic directions. We observed an in-plane anisotropy of  8~8% in case of spins oriented either along [11ˉ0][1\bar{1}0] or [110][110] directions and  25~25% anisotropy between in-plane and perpendicular-to-plane orientation of spins.Comment: 9 pages, 3 figure

    All-electrical measurement of spin injection in a magnetic pp-nn junction diode

    Full text link
    Magnetic pp-nn junction diodes are fabricated to investigate spin-polarized electron transport. The injection of spin-polarized electrons in a semiconductor is achieved by driving a current from a ferromagnetic injector (Fe), into a bulk semiconductor (nn-GaAs) via schottky contact. For detection, a diluted magnetic semiconductor (pp-GaMnAs) layer is used. Clear magnetoresistance was observed only when a high forward bias was applied across the pp-nn junction.Comment: 4 pages, 4 figure

    A self consistent chemically stratified atmosphere model for the roAp star 10 Aquilae

    Full text link
    Context: Chemically peculiar A type (Ap) stars are a subgroup of the CP2 stars which exhibit anomalous overabundances of numerous elements, e.g. Fe, Cr, Sr and rare earth elements. The pulsating subgroup of the Ap stars, the roAp stars, present ideal laboratories to observe and model pulsational signatures as well as the interplay of the pulsations with strong magnetic fields and vertical abundance gradients. Aims: Based on high resolution spectroscopic observations and observed stellar energy distributions we construct a self consistent model atmosphere, that accounts for modulations of the temperature-pressure structure caused by vertical abundance gradients, for the roAp star 10 Aquilae (HD 176232). We demonstrate that such an analysis can be used to determine precisely the fundamental atmospheric parameters required for pulsation modelling. Methods: Average abundances were derived for 56 species. For Mg, Si, Ca, Cr, Fe, Co, Sr, Pr, and Nd vertical stratification profiles were empirically derived using the ddafit minimization routine together with the magnetic spectrum synthesis code synthmag. Model atmospheres were computed with the LLModels code which accounts for the individual abundances and stratification of chemical elements. Results: For the final model atmosphere Teff=7550 K and log g=3.8 were adopted. While Mg, Si, Co and Cr exhibit steep abundance gradients Ca, Fe and Sr showed much wider abundance gradients between log tau_5000=-1.5 and 0.5. Elements Mg and Co were found to be the least stratified, while Ca and Sr showed strong depth variations in abundance of up to ~ 6 dex.Comment: 9 pages, 15 figure

    Convey HC-1 Hybrid Core Computer - The Potential of FPGAs in Numerical Simulation

    Get PDF

    Magnetic anisotropy of epitaxial (Ga,Mn)As on (113)A GaAs

    Get PDF
    The temperature dependence of magnetic anisotropy in (113)A (Ga,Mn)As layers grown by molecular beam epitaxy is studied by means of superconducting quantum interference device (SQUID) magnetometry as well as by ferromagnetic resonance (FMR) and magnetooptical effects. Experimental results are described considering cubic and two kinds of uniaxial magnetic anisotropy. The magnitude of cubic and uniaxial anisotropy constants is found to be proportional to the fourth and second power of saturation magnetization, respectively. Similarly to the case of (001) samples, the spin reorientation transition from uniaxial anisotropy with the easy along the [-1, 1, 0] direction at high temperatures to the biaxial anisotropy at low temperatures is observed around 25 K. The determined values of the anisotropy constants have been confirmed by FMR studies. As evidenced by investigations of the polar magnetooptical Kerr effect, the particular combination of magnetic anisotropies allows the out-of-plane component of magnetization to be reversed by an in-plane magnetic field. Theoretical calculations within the p-d Zener model explain the magnitude of the out-of-plane uniaxial anisotropy constant caused by epitaxial strain, but do not explain satisfactorily the cubic anisotropy constant. At the same time the findings point to the presence of an additional uniaxial anisotropy of unknown origin. Similarly to the case of (001) films, this additional anisotropy can be explained by assuming the existence of a shear strain. However, in contrast to the (001) samples, this additional strain has an out-of-the-(001)-plane character.Comment: 13 pages, 9 figure
    corecore