2,178 research outputs found

    Onset of giant planet migration before 4480 million years ago

    Full text link
    Immediately after their formation, the terrestrial planets experienced intense impact bombardment by comets, leftover planetesimals from primary accretion, and asteroids. This temporal interval in solar system evolution, termed late accretion, thermally and chemically modified solid planetary surfaces and may have impeded the emergence of life on the Hadean Earth. The sources and tempo of late accretion are, however, vague. Here, we present a timeline that relates variably retentive radiometric ages from asteroidal meteorites, to new dynamical models of late accretion that invokes giant planet migration. Reconciliation of the geochronological data with dynamical models shows that giant planet migration immediately leads to an intense 30 Myr influx of comets to the entire solar system. The absence of whole-sale crustal reset ages after 4450 Ma for the most resilient chronometers from Earth, Moon, Mars, Vesta and various meteorite parent bodies confines the onset of giant planet migration to no later than ca. 4480 Ma. Waning impacts from planetesimals, asteroids (and a minor cometary component) continue to strike the inner planets through a protracted monotonic decline in impactor flux; this is in agreement with predictions from crater chronology. Amended global 3-D thermal analytical bombardment models derived from our new impact mass-production functions show that persistent niches for prebiotic chemistry on the early Hadean Earth could endure late accretion for at least the last 4400 Myr.Comment: Main text: 46564 characters with spaces/7549 words Tables: 3 Figures:7 References: 11

    Earth-like Habitats in Planetary Systems

    Full text link
    Understanding the concept of habitability is related to an evolutionary knowledge of the particular planet-in-question. Additional indications so-called "systemic aspects" of the planetary system as a whole governs a particular planet's claim on habitability. Here we focus on such systemic aspects and discuss their relevance to the formation of an 'Earth-like' habitable planet. We summarize our results obtained by lunar sample work and numerical models within the framework of the Research Alliance "Planetary Evolution and Life". We consider various scenarios which simulate the dynamical evolution of the Solar System and discuss the likelihood of forming an Earth-like world orbiting another star. Our model approach is constrained by observations of the modern Solar System and the knowledge of its history. Results suggest that the long-term presence of terrestrial planets is jeopardized due to gravitational interactions if giant planets are present. But habitability of inner rocky planets may be supported in those planetary systems hosting giant planets. Gravitational interactions within a complex multiple-body structure including giant planets may supply terrestrial planets with materials which formed in the colder region of the proto-planetary disk. During these processes, water, the prime requisite for habitability, is delivered to the inner system. This may occur either during the main accretion phase of terrestrial planets or via impacts during a post-accretion bombardment. Results for both processes are summarized and discussed with reference to the lunar crater record. Starting from a scenario involving migration of the giant planets this contribution discusses the delivery of water to Earth, the modification of atmospheres by impacts in a planetary system context and the likelihood of the existence of extrasolar Earth-like habitable worlds.Comment: 36 Pages, 6 figures, 2014, Special Issue in Planetary and Space Science on the Helmholtz Research Alliance on Planetary Evolution and Lif

    The cratering record of Ganymede and the origin of potential impactors: open issues

    Get PDF
    The origin of impactors on the Galilean satellites of Jupiter is an open question. In this study we present results from a mapping campaign based on reprocessed Voyager and Galileo SSI images in order to derive a thourough data base of Ganymede's crater distributions

    Adjuvant radiotherapy and chemoradiation with gemcitabine after R1 resection in patients with pancreatic adenocarcinoma

    Get PDF
    Background: The purpose of the study was to evaluate the effect of radiation therapy and chemoradiation with gemcitabine (GEM) after R1 resection in patients with pancreatic adenocarcinoma (PAC). Methods: We performed a retrospective analysis of 25 patients who were treated with postoperative radiotherapy (RT) or chemoradiation (CRT) after surgery with microscopically positive resection margins for primary pancreatic cancer (PAC). Median age was 60 years (range 34 to 74 years), and there were 17 male and 8 female patients. Fractionated RT was applied with a median dose of 49.6 Gy (range 36 to 54 Gy). Eight patients received additional intraoperative radiotherapy (IORT) with a median dose of 12 Gy. Results: Median overall survival (mOS) of all treated patients was 22 months (95% confidence interval (CI) 7.9 to 36.1 months) after date of resection and 21.1 months (95% CI 7.6 to 34.6 months) after start of (C)RT. Median progression-free survival (mPFS) was 13.0 months (95% CI 0.93 to 25 months). Grading (G2 vs. G3, P = 0.005) and gender (female vs. male, P = 0.01) were significantly correlated with OS. There was a significant difference in mPFS between male and female patients (P = 0.008). A total of 11 from 25 patients experienced local tumour progression, and 19 patients were diagnosed with either locoregional or distant failure. Conclusions: We demonstrated that GEM-based CRT can be applied in analogy to neoadjuvant protocols in the adjuvant setting for PAC patients at high risk for disease recurrence after incomplete resection. Patients undergoing additive CRT have a rather good OS and PFS compared to historical control patient groups

    ExoMars Raman Laser Spectrometer RLS, a tool for the potential recognition of wet target craters on Mars

    Full text link
    In the present work, NIR, LIBS, Raman and XRD techniques have been complementarily used to carry out a comprehensive characterization of a terrestrial analogue selected from the Chesapeake Bay Impact Structure (CBIS). The obtained data clearly highlight the key role of Raman spectroscopy in the detection of minor and trace compounds, through which inferences about geological processes occurred in the CBIS can be extrapolated. Beside the use of commercial systems, further Raman analyses were performed by the Raman Laser Spectrometer (RLS) ExoMars Simulator. This instrument represents the most reliable tool to effectively predict the scientific capabilities of the ExoMars/Raman system that will be deployed on Mars in 2021. By emulating the analytical procedures and operational restrictions established by the ExoMars mission rover design, it was proved that the RLS ExoMars Simulator is able to detect the amorphization of quartz, which constitutes an analytical clue of the impact origin of craters. On the other hand, the detection of barite and siderite, compounds crystallizing under hydrothermal conditions, helps to indirectly confirm the presence of water in impact targets. Furthermore, the RLS ExoMars Simulator capability of performing smart molecular mappings was also evaluated. According to the obtained results, the algorithms developed for its operation provide a great analytical advantage over most of the automatic analysis systems employed by commercial Raman instruments, encouraging its application for many additional scientific and commercial purposes

    an island endemic forest specialist and a widespread habitat generalist

    Get PDF
    Background. The bay cat Catopuma badia is endemic to Borneo, whereas its sister species the Asian golden cat Catopuma temminckii is distributed from the Himalayas and southern China through Indochina, Peninsular Malaysia and Sumatra. Based on morphological data, up to five subspecies of the Asian golden cat have been recognized, but a taxonomic assessment, including molecular data and morphological characters, is still lacking. Results. We combined molecular data (whole mitochondrial genomes), morphological data (pelage) and species distribution projections (up to the Late Pleistocene) to infer how environmental changes may have influenced the distribution of these sister species over the past 120 000 years. The molecular analysis was based on sequenced mitogenomes of 3 bay cats and 40 Asian golden cats derived mainly from archival samples. Our molecular data suggested a time of split between the two species approximately 3.16 Ma and revealed very low nucleotide diversity within the Asian golden cat population, which supports recent expansion of the population. Discussion. The low nucleotide diversity suggested a population bottleneck in the Asian golden cat, possibly caused by the eruption of the Toba volcano in Northern Sumatra (approx. 74 kya), followed by a continuous population expansion in the Late Pleistocene/Early Holocene. Species distribution projections, the reconstruction of the demographic history, a genetic isolation-by-distance pattern and a gradual variation of pelage pattern support the hypothesis of a post-Toba population expansion of the Asian golden cat from south China/Indochina to Peninsular Malaysia and Sumatra. Our findings reject the current classification of five subspecies for the Asian golden cat, but instead support either a monotypic species or one comprising two subspecies: (i) the Sunda golden cat, distributed south of the Isthmus of Kra: C. t. temminckii and (ii) Indochinese, Indian, Himalayan and Chinese golden cats, occurring north of the Isthmus: C. t. moormensis

    Community Engagement newsletter, Faculty of Veterinary Science, Spring, 2011

    Get PDF
    Community engagement project at VulPro / Cassie van der Walt, Jeanine Gautschi, Werner Wentzel, Luzanne Lourens, Reinach Erasmus & Natalie Braysher - Mamelodi Animal Health Clinic (MAHC) moving forward / Cherrie Liebenberg - OP students promoting awareness of the importance of castration at Loate CVC - Spanish and South African vet students visit the Loate CVC / Stephanie Friedman (Student) & Daleen Grundlingh (SAVA CVC Coordinator) - Pets picnic in the park / Lauren DommettNews articles with colour photos about the various community engagement projects of the Faculty of Veterinary Science, University of Pretoria
    corecore