9 research outputs found

    Executive Summary:International Clinical Practice Guidelines for Pediatric Ventilator Liberation, A Pediatric Acute Lung Injury and Sepsis Investigators (PALISI) Network Document

    Get PDF
    Rationale: Pediatric-specific ventilator liberation guidelines are lacking despite the many studies exploring elements of extubation readiness testing. The lack of clinical practice guidelines has led to significant and unnecessary variation in methods used to assess pediatric patients’ readiness for extubation. Methods: Twenty-six international experts comprised a multiprofessional panel to establish pediatrics-specific ventilator liberation clinical practice guidelines, focusing on acutely hospitalized children receiving invasive mechanical ventilation for more than 24 hours. Eleven key questions were identified and first prioritized using the Modified Convergence of Opinion on Recommendations and Evidence. A systematic review was conducted for questions that did not meet an a priori threshold of &gt;80% agreement, with Grading of Recommendations, Assessment, Development, and Evaluation methodologies applied to develop the guidelines. The panel evaluated the evidence and drafted and voted on the recommendations. Measurements and Main Results: Three questions related to systematic screening using an extubation readiness testing bundle and a spontaneous breathing trial as part of the bundle met Modified Convergence of Opinion on Recommendations criteria of &gt;80% agreement. For the remaining eight questions, five systematic reviews yielded 12 recommendations related to the methods and duration of spontaneous breathing trials, measures of respiratory muscle strength, assessment of risk of postextubation upper airway obstruction and its prevention, use of postextubation noninvasive respiratory support, and sedation. Most recommendations were conditional and based on low to very low certainty of evidence. Conclusions: This clinical practice guideline provides a conceptual framework with evidence-based recommendations for best practices related to pediatric ventilator liberation.</p

    Executive Summary: International Clinical Practice Guidelines for Pediatric Ventilator Liberation, A PALISI Network Document

    Get PDF
    RATIONALE: Pediatric specific ventilator liberation guidelines are lacking despite the many studies exploring elements of extubation readiness testing. The lack of clinical practice guidelines has led to significant and unnecessary variation in methods used to assess pediatric patients' readiness for extubation. METHODS: Twenty-six international experts comprised a multi-professional panel to establish pediatric specific ventilator liberation clinical practice guidelines, focusing on acutely hospitalized children receiving invasive mechanical ventilation for more than 24 hours. Eleven key questions were identified and first prioritized using the Modified Convergence of Opinion on Recommendations and Evidence. Systematic review was conducted for questions which did not meet an a-priori threshold of ≥80% agreement, with Grading of Recommendations, Assessment, Development, and Evaluation methodologies applied to develop the guidelines. The panel evaluated the evidence, drafted, and voted on the recommendations. MEASUREMENTS AND MAIN RESULTS: Three questions related to systematic screening, using an extubation readiness testing bundle and use of a spontaneous breathing trial as part of the bundle met Modified Convergence of Opinion on Recommendations criteria of ≥80% agreement. For the remaining 8 questions, 5 systematic reviews yielded 12 recommendations related to the methods and duration of spontaneous breathing trials; measures of respiratory muscle strength; assessment of risk of post-extubation upper airway obstruction and its prevention; use of post-extubation non-invasive respiratory support; and sedation. Most recommendations were conditional and based on low to very low certainty of evidence. CONCLUSION: This clinical practice guideline provides a conceptual framework with evidence-based recommendations for best practices related to pediatric ventilator liberation.The project was funded by Eunice Kennedy Shriver National Institute of Child Health (NICHD) and Human Development National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) (R13HD102137), in addition to funds from department of pediatrics at Indiana University School of Medicine, Indianapolis, Indiana

    Operational Definitions related to Pediatric Ventilator Liberation

    Get PDF
    BACKGROUND: Common, operational definitions are crucial to assess interventions and outcomes related to pediatric mechanical ventilation. These definitions can reduce unnecessary variability amongst research and quality improvement efforts, to ensure findings are generalizable and can be pooled to establish best practices. RESEARCH QUESTION: Can we establish operational definitions for key elements related to pediatric ventilator liberation using a combination of detailed literature review and consensus-based approaches? STUDY DESIGN AND METHODS: A panel of 26 international experts in pediatric ventilator liberation, two methodologists and two librarians conducted systematic reviews on eight topic areas related to pediatric ventilator liberation. Through a series of virtual meetings, we established draft definitions which were voted upon using an anonymous web-based process. Definitions were revised by incorporating extracted data gathered during the systematic review and discussed in another consensus meeting. A second round of voting was conducted to confirm the final definitions. RESULTS: In eight topic areas identified by the experts, 16 preliminary definitions were established. Based on initial discussion and the first round of voting, modifications were suggested for 11 of the 16 definitions. There was significant variability in how these items were defined in the literature reviewed. The final round of voting achieved ≥80% agreement for all 16 definitions in the following areas: what constitutes respiratory support (invasive mechanical ventilation and non-invasive respiratory support), liberation and failed attempts to liberate from invasive mechanical ventilation, liberation from respiratory support, duration of non-invasive respiratory support, total duration of invasive mechanical ventilation, spontaneous breathing trials, extubation readiness testing, 28-ventilator free days, and planned vs rescue use of post-extubation non-invasive respiratory support. INTERPRETATION: We propose these consensus-based definitions for elements of pediatric ventilator liberation, informed by evidence, be used for future quality improvement initiatives and research studies to improve generalizability, and facilitate comparison.The project was funded by Eunice Kennedy Shriver National Institute of Child Health (NICHD) and Human Development National Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health (NIH) (R13HD102137), in addition to funds from the Department of Pediatrics at Indiana University School of Medicine, Indianapolis, Indiana

    Relationship Between Gestational Age and Outcomes After Congenital Heart Surgery

    No full text
    BackgroundPrevious studies suggest that birth before 39 weeks' gestational age (GA) is associated with higher perioperative mortality and morbidity after congenital heart surgery. The optimal approach to timing of cardiac operation in premature infants remains unclear. We investigated the impact of GA at birth and corrected GA at surgery on postoperative outcomes using the Pediatric Cardiac Critical Care Consortium (PC4) database.MethodsInfants undergoing selected index cardiac operations before the end of the neonatal period were included (n&nbsp;= 2298). GA at birth and corrected GA at the time of the index cardiac operation were used as categorical predictors and fitted as a cubic spline to assess nonlinear relationships. The primary outcome was hospital mortality. Multivariable logistic regression models assessed the association between predictors and outcomes while adjusting for confounders.ResultsLate-preterm (34-36 weeks) birth was associated with increased odds of mortality compared with full-term (39-40 weeks) birth, while early-term (37-38 weeks) birth was not associated with increased mortality. Corrected GA at surgery of 34 to 37 weeks compared with 40 to 44 weeks was associated with increased mortality. When analyzing corrected GA at surgery as a continuous predictor of outcome, odds of survival improve as patients approach 39 weeks corrected GA.ConclusionsContrary to previous literature, we did not find an association between early-term birth and hospital mortality at PC4 hospitals. Our analysis of the relationship between corrected GA and mortality suggests that operating closer to full-term corrected GA may improve survival

    Duration of Postoperative Mechanical Ventilation as a Quality Metric for Pediatric Cardiac Surgical Programs

    No full text
    BackgroundFew metrics exist to assess quality of care at pediatric cardiac surgical programs, limiting opportunities for benchmarking and quality improvement. Postoperative duration of mechanical ventilation (POMV) may be an important quality metric because of its association with complications and resource utilization. In this study we modelled case-mix-adjusted POMV duration and explored hospital performance across POMV metrics.MethodsThis study used the Pediatric Cardiac Critical Care Consortium clinical registry to analyze 4,739 hospitalizations from 15 hospitals (October 2013 to August 2015). All patients admitted to pediatric cardiac intensive care units after an index cardiac operation were included. We fitted a model to predict duration of POMV accounting for patient characteristics. Robust estimates of SEs were obtained using bootstrap resampling. We created performance metrics based on&nbsp;observed-to-expected (O/E) POMV to compare hospitals.ResultsOverall, 3,108 patients (65.6%) received POMV; the remainder were extubated intraoperatively. Our model was well calibrated across groups; neonatal age had the largest effect on predicted POMV. These comparisons suggested clinically and statistically important variation in POMV duration across centers with a threefold difference observed in O/E ratios (0.6 to 1.7). We&nbsp;identified 1 hospital with better-than-expected and&nbsp;3&nbsp;hospitals with worse-than-expected performance (p&nbsp;&lt;&nbsp;0.05) based on the O/E ratio.ConclusionsWe developed a novel case-mix-adjusted model to predict POMV duration after congenital heart operations. We report variation across hospitals on metrics of O/E duration of POMV that may be suitable for benchmarking quality of care. Identifying high-performing centers and practices that safely limit the duration of POMV could stimulate quality improvement efforts
    corecore