6 research outputs found
The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
The central parsecs of Centaurus A: High Excitation Gas, a Molecular Disk, and the Mass of the Black Hole
We present two-dimensional gas-kinematic maps of the central region in Centaurus A. The adaptive optics (AO) assisted SINFONI data from the VLT have a resolution of 0.12" in K-band. The ionized gas species (Br_gamma, [FeII], [SiVI]) show a rotational pattern that is increasingly overlaid by non-rotational motion for higher excitation lines in direction of Cen A's radio jet. The emission lines of molecular hydrogen (H_2) show regular rotation and no distortion due to the jet. The molecular gas seems to be well settled in the gravitational potential of the stars and the central supermassive black hole and we thus use it as a tracer to model the mass in the central +/-1.5". These are the first AO integral-field observations on the nucleus of Cen A, enabling us to study the regularity of the rotation around the black hole, well inside the radius of influence, and to determine the inclination angle of the gas disk in a robust way. The gas kinematics are best modeled through a tilted-ring model that describes the warped gas disk; its mean inclination angle is ~34deg and the mean position angle of the major axis is ~155deg. The best-fit black hole mass is M_BH~4.5x10^7 Msolar, based on a "kinematically hot" disk model where the velocity dispersion is included through the Jeans equation. This black hole mass estimate is somewhat lower than, but consistent with the mass values previously derived from ionized gas kinematics. It is also consistent with the stellar dynamical measurement from the same AO observations, which we present in a separate paper. It brings Cen A in agreement with the M_BH-sigma relation
Cold dust emission from X-ray AGN in the SCUBA-2 Cosmology Legacy Survey: dependence on luminosity, obscuration and AGN activity
We study the 850-μm emission in X-ray-selected active galactic nuclei (AGN) in the ∼2 deg2 COSMOS field using new data from the SCUBA-2 Cosmology Legacy Survey. We find 19 850-μm bright X-ray AGN in a ‘high-sensitivity’ region covering 0.89 deg2 with flux densities of S850 = 4–10 mJy. The 19 AGN span the full range in redshift and hard X-ray luminosity covered by the sample – 0.7 ≲ z ≲ 3.5 and 43.2 ≲ log10(LX) ≲ 45. We report a highly significant stacked 850-μm detection of a hard X-ray flux-limited population of 699 z > 1 X-ray AGN – S850 = 0.71 ± 0.08 mJy. We explore trends in the stacked 850-μm flux densities with redshift, finding no evolution in the average cold dust emission over the redshift range probed. For type 1 AGN, there is no significant correlation between the stacked 850-μm flux and hard X-ray luminosity. However, in type 2 AGN the stacked submillimeter flux is a factor of 2 higher at high luminosities. When averaging over all X-ray luminosities, no significant differences are found in the stacked submillimeter fluxes of type 1 and type 2 AGN as well as AGN separated on the basis of X-ray hardness ratios and optical-to-infrared colours. However, at log10(L2 − 10/erg s−1) > 44.4, dependences in average submillimeter flux on the optical-to-infrared colours become more pronounced. We argue that these high-luminosity AGN represent a transition from a secular to a merger-driven evolutionary phase where the star formation rates and accretion luminosities are more tightly coupled. Stacked AGN 850-μm fluxes are compared to the stacked fluxes of a mass-matched sample of K-band-selected non-AGN galaxies. We find that at 10.
The SCUBA-2 Cosmology Legacy Survey: the submillimetre properties of Lyman break galaxies at z=3-5
We present statistically significant detections at 850um of the Lyman Break Galaxy (LBG) population at z=3, 4, and 5 using data from the Submillimetre Common User Bolometer Array 2 (SCUBA-2) Cosmology Legacy Survey (S2CLS) in the United Kingdom Infrared Deep Sky Survey Ultra Deep Survey (UKIDSS-UDS) field. We employ a stacking technique to probe beneath the survey limit to measure the average 850um flux density of LBGs at z=3, 4, and 5 with typical ultraviolet luminosities of L(1700A)~10^29 erg/s/Hz. We measure 850um flux densities of (0.25 +/- 0.03, (0.41 +/- 0.06), and (0.88 +/- 0.23) mJy respectively, and find that they contribute at most 20 per cent to the cosmic far-infrared background at 850um. Fitting an appropriate range of spectral energy distributions to the z=3, 4, and 5 LBG stacked 24-850um fluxes, we derive infrared (IR) luminosities of L(8-1000um)~3.2, 5.5, and 11.0x10^11 Lsun (corresponding to star formation rates of ~50-200 Msun/yr) respectively. We find that the evolution in the IR luminosity density of LBGs is broadly consistent with model predictions for the expected contribution of luminous IR galaxy (LIRG) to ultraluminous IR galaxy (ULIRG) type systems at these epochs. We also see a strong positive correlation between stellar mass and IR luminosity. Our data are consistent with the main sequence of star formation showing little or no evolution from z=3 to 5. We have also confirmed that, for a fixed mass, the reddest LBGs (UV slope Beta -> 0) are indeed redder due to dust extinction, with SFR(IR)/SFR(UV) increasing by approximately an order of magnitude over -
The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs