216 research outputs found

    Toward a Global Dispersive Optical Model for the Driplines

    Get PDF
    A dispersive-optical-model analysis has been performed for both protons and neutrons on 40,42,44,48Ca isotopes. The fitted potentials describe accurately both scattering and bound quantities and extrapolate well to other stable nuclei. Further experimental information will be gathered to constrain extrapolations toward the driplines.Comment: Invited talk at the "10th International Conference on Nucleus-Nucleus Collisions", Beijing, 16-21 August 200

    Adding Corrections to Global Spherical Potentials for Use in a Coupled-Channel Formulation

    Full text link
    The coupled-channel technique augments a non-relativistic distorted wave born approximation scattering calculation to include a coupling to virtual states from the negative energy region. It has been found to be important in low energy nucleon-nucleus scattering. We modify the nucleon-nucleus standard optical potentials, not designed for a coupled-channel space, so they can be used in that setting. The changes are small and systematic. We use a standard scattering code to adjust a variety of optical potentials and targets such that the original fit to scattering observables are maintained as we incorporate the coupled-channel environment. Overall over forty target nuclei were tested from A=12A=12 to A=205A=205 and nucleon projectile energies from 1 MeV to 200 MeV. There is excellent improvement in fitting the scattering observables, especially for low energy neutron scattering.The corrections were found to be unimportant for projectile energies greater than 200 MeV. The largest changes are to the surface amplitudes while the real radii and the real central amplitude are modified by only a few percent, every other parameter is unchanged. This technique is general enough to be applied to a variety of inelastic theoretical calculations.Comment: Second draft, not yet submitted to a journal in this for

    Autologous non-myeloablative hematopoietic stem cell transplantation for diffuse scleroderma

    Get PDF

    Non-myeloablative autologous hematopoietic stem cell transplantation for relapsing-remitting multiple sclerosis

    Get PDF

    Total Cross Sections for Neutron Scattering

    Get PDF
    Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-sections for neutron scattering from 16^{16}O and 40^{40}Ca are calculated as a function of energy from 50−70050-700~MeV laboratory energy with a microscopic first order optical potential derived within the framework of the Watson expansion. Although these results are already in qualitative agreement with the data, the inclusion of medium corrections to the propagator is essential to correctly predict the energy dependence given by the experiment.Comment: 10 pages (Revtex 3.0), 6 fig

    Full-Folding Optical Potentials for Elastic Nucleon-Nucleus Scattering based on Realistic Densities

    Get PDF
    Optical model potentials for elastic nucleon nucleus scattering are calculated for a number of target nuclides from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-nucleon t-matrices derived from two different Bonn meson exchange models. Elastic proton and neutron scattering observables calculated from these full-folding optical potentials are compared to those obtained from `optimum factorized' approximations in the energy regime between 65 and 400 MeV projectile energy. The optimum factorized form is found to provide a good approximation to elastic scattering observables obtained from the full-folding optical potentials, although the potentials differ somewhat in the structure of their nonlocality.Comment: 21 pages, LaTeX, 17 postscript figure

    Sensitivities of the Proton-Nucleus Elastical Scattering Observables of 6He and 8He at Intermediate Energies

    Get PDF
    We investigate the use of proton-nucleus elastic scattering experiments using secondary beams of 6He and 8He to determine the physical structure of these nuclei. The sensitivity of these experiments to nuclear structure is examined by using four different nuclear structure models with different spatial features using a full-folding optical potential model. The results show that elastic scattering at intermediate energies (<100 MeV per nucleon) is not a good constraint to be used to determine features of structure. Therefore researchers should look elsewhere to put constraints on the ground state wave function of the 6He and 8He nuclei.Comment: To be published in Phys. Rev.

    Application of Multiple Scattering Theory to Lower Energy Elastic Nucleon-Nucleus Reactions

    Full text link
    The optical model potentials for nucleon-nucleus elastic scattering at 6565~MeV are calculated for 12^{12}C, 16^{16}O, 28^{28}Si, 40^{40}Ca, 56^{56}Fe, 90^{90}Zr and 208^{208}Pb in first order multiple scattering theory, following the prescription of the spectator expansion, where the only inputs are the free NN potentials, the nuclear densities and the nuclear mean field as derived from microscopic nuclear structure calculations. These potentials are used to predict differential cross sections, analyzing powers and spin rotation functions for neutron and proton scattering at 65 MeV projectile energy and compared with available experimental data.Comment: 12 pages (Revtex 3.0), 7 fig
    • 

    corecore