15 research outputs found

    An integrated workflow for charting the human interaction proteome: insights into the PP2A system

    Get PDF
    Protein complexes represent major functional units for the execution of biological processes. Systematic affinity purification coupled with mass spectrometry (AP-MS) yielded a wealth of information on the compendium of protein complexes expressed in Saccharomyces cerevisiae. However, global AP-MS analysis of human protein complexes is hampered by the low throughput, sensitivity and data robustness of existing procedures, which limit its application for systems biology research. Here, we address these limitations by a novel integrated method, which we applied and benchmarked for the human protein phosphatase 2A system. We identified a total of 197 protein interactions with high reproducibility, showing the coexistence of distinct classes of phosphatase complexes that are linked to proteins implicated in mitosis, cell signalling, DNA damage control and more. These results show that the presented analytical process will substantially advance throughput and reproducibility in future systematic AP-MS studies on human protein complexes

    Modularity and hormone sensitivity of the Drosophila melanogaster insulin receptor/target of rapamycin interaction proteome

    Get PDF
    First systematic analysis of the evolutionary conserved InR/TOR pathway interaction proteome in Drosophila.Quantitative mass spectrometry revealed that 22% of identified protein interactions are regulated by the growth hormone insulin affecting membrane proximal as well as intracellular signaling complexes.Systematic RNA interference linked a significant fraction of network components to the control of dTOR kinase activity.Combined biochemical and genetic data suggest dTTT, a dTOR-containing complex required for cell growth control by dTORC1 and dTORC2 in vivo

    PIMS modulates immune tolerance by negatively regulating Drosophila innate immune signaling

    Get PDF
    Metazoans tolerate commensal-gut microbiota by suppressing immune activation while maintaining the ability to launch rapid and balanced immune reactions to pathogenic bacteria. Little is known about the mechanisms underlying the establishment of this threshold. We report that a recently identified Drosophila immune regulator, which we call PGRP-LC-interacting inhibitor of Imd signaling (PIMS), is required to suppress the Imd innate immune signaling pathway in response to commensal bacteria. pims expression is Imd (immune deficiency) dependent, and its basal expression relies on the presence of commensal flora. In the absence of PIMS, resident bacteria trigger constitutive expression of antimicrobial peptide genes (AMPs). Moreover, pims mutants hyperactivate AMPs upon infection with Gram-negative bacteria. PIMS interacts with the peptidoglycan recognition protein (PGRP-LC), causing its depletion from the plasma membrane and shutdown of Imd signaling. Therefore, PIMS is required to establish immune tolerance to commensal bacteria and to maintain a balanced Imd response following exposure to bacterial infections

    Deciphering factors linked with reduced SARS-CoV-2 susceptibility in the Swiss HIV Cohort Study

    Get PDF
    BACKGROUND Factors influencing susceptibility to SARS-CoV-2 remain to be resolved. Using data of the Swiss HIV Cohort Study (SHCS) on 6,270 people with HIV (PWH) and serologic assessment for SARS-CoV-2 and circulating-human-coronavirus (HCoV) antibodies, we investigated the association of HIV-related and general parameters with SARS-CoV-2 infection. METHODS We analyzed SARS-CoV-2 PCR-tests, COVID-19 related hospitalizations, and deaths reported to the SHCS between January 1, 2020 and December 31, 2021. Antibodies to SARS-CoV-2 and HCoVs were determined in pre-pandemic (2019) and pandemic (2020) bio-banked plasma and compared to HIV-negative individuals. We applied logistic regression, conditional logistic regression, and Bayesian multivariate regression to identify determinants of SARS-CoV-2 infection and Ab responses to SARS-CoV-2 in PWH. RESULTS No HIV-1-related factors were associated with SARS-CoV-2 acquisition. High pre-pandemic HCoV antibodies were associated with a lower risk of subsequent SARS-CoV-2 infection and with higher SARS-CoV-2 antibody responses upon infection. We observed a robust protective effect of smoking on SARS-CoV-2-infection risk (aOR= 0.46 [0.38,0.56], p=2.6*10-14), which occurred even in previous smokers, and was highest for heavy smokers. CONCLUSIONS Our findings of two independent protective factors, smoking and HCoV antibodies, both affecting the respiratory environment, underscore the importance of the local immune milieu in regulating susceptibility to SARS-CoV-2

    Proteogenomic convergence for understanding cancer pathways and networks

    Full text link

    Early Antibodies Specific for the Neutralizing Epitope on the Receptor Binding Subunit of the Lymphocytic Choriomeningitis Virus Glycoprotein Fail To Neutralize the Virus▿

    No full text
    Lymphocytic choriomeningitis virus (LCMV) is a murine arenavirus whose glycoprotein consists of a transmembrane subunit (GP-2) and a receptor-binding subunit (GP-1). LCMV-neutralizing antibodies (nAbs) are directed against a single site on GP-1 and occur 1 month after the infection of cytotoxic-T-lymphocyte (CTL) deficient mice. In wild-type mice, however, CTLs control early infection, and weak nAb titers emerge very late (after 70 to 150 days) if at all. Production of recombinant GP-1 in native conformation enabled us to study the emergence of GP-1-binding antibodies directed against the neutralizing epitope. By combining binding and neutralization assays, we correlated the development of binding antibodies versus nAbs in wild-type and CTL-deficient mice after infection with different LCMV doses. We found that wild-type mice developed GP-1-specific antibodies already by day 8 after exposure to high but not low doses, demonstrating that naive GP-1-specific B cells were infrequent. Furthermore, the induced antibodies bound to the neutralizing GP-1 epitope but failed to neutralize the virus and therefore were of low affinity. In CTL-deficient mice, where massive viremia quickly levels initial differences in viral load, low and high doses induced low-affinity non-neutralizing GP-1-binding antibodies with kinetics similar to high-dose-infected wild-type mice. Only in CTL-deficient mice, however, the GP-1-specific antibodies developed into nAbs within 1 month. We conclude that LCMV uses a dual strategy to evade nAb responses in wild-type mice. First, LCMV exploits a “hole” in the murine B-cell repertoire, which provides only a small and narrow initial pool of low-affinity GP-1-specific B cells. Second, affinity maturation of the available low-affinity non-neutralizing antibodies is impaired
    corecore