1,203 research outputs found

    Atom-Dimer Scattering in a Three-Component Fermi Gas

    Full text link
    Ultracold gases of three distinguishable particles with large scattering lengths are expected to show rich few-body physics related to the Efimov effect. We have created three different mixtures of ultracold 6Li atoms and weakly bound 6Li2 dimers consisting of atoms in three different hyperfine states and studied their inelastic decay via atom-dimer collisions. We have found resonant enhancement of the decay due to the crossing of Efimov-like trimer states with the atom-dimer continuum in one mixture as well as minima of the decay in another mixture, which we interpret as a suppression of exchange reactions of the type |12>+|3> -> |23>+|1>. Such a suppression is caused by interference between different decay paths and demonstrates the possiblity to use Efimov physics to control the rate constants for molecular exchange reactions in the ultracold regime.Comment: 5 pages, 3 figure

    Investigating masking effects of age trends on the correlations among tree ring proxies

    Get PDF
    Age-related trends are present in tree-ring widths (TRW), but their presence in tree rings isotope is debated. It is unclear how cambial age influences the relationships between TRW and isotopes. Tree-ring isotopes of alpine larch and cembran-pine trees showed only trends in the juvenile period (>100 years), which might mask the inter-relations between tree-ring proxies during cambial age. This work tries to unmask the age-trend influences by examining the correlations in TRW-stable isotopes with and without age-trend correction. The non-detrended and linear-detrended values of TRW, of δD and δ18O showed significant correlations for ages up to 100 years, but not afterward. However, the correlation values, after spline or first-difference time-series detrending, were not age-related. Thus, detrending methods affect the correlations in the juvenile phase and may affect climate-related interpretations. The correlations between TRW and δ13C were not age-related, while those among the isotopes were significant throughout the ages. The correlation between δ13C and δD was the exception, as it became significant only after age > 100 years, suggesting a different use of reserves in the juvenile phase. In conclusion, the relationships among the tree-ring parameters are stable in all the different detrend scenarios after the juvenile phase, and they can be used together in multi-proxy paleoclimatic studies. The data of the juvenile phase can be used after spline-detrending or first-difference time-series calculation, depending on the purpose of the analysis to remove age-related trends. The work also provides clues on the possible causes of juvenile age trends

    Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers

    Full text link
    We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-universal g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.Comment: Conference Proceeding ICPEAC 2009 Kalamazoo, to appear in Journal of Physics: Conference Serie

    Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers

    Full text link
    We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-universal g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.Comment: Conference Proceeding ICPEAC 2009 Kalamazoo, to appear in Journal of Physics: Conference Serie

    Observation of an Efimov resonance in an ultracold mixture of atoms and weakly bound dimers

    Full text link
    We discuss our recent observation of an atom-dimer Efimov resonance in an ultracold mixture of Cs atoms and Cs_2 Feshbach molecules [Nature Phys. 5, 227 (2009)]. We review our experimental procedure and present additional data involving a non-universal g-wave dimer state, to contrast our previous results on the universal s-wave dimer. We resolve a seeming discrepancy when quantitatively comparing our experimental findings with theoretical results from effective field theory.Comment: Conference Proceeding ICPEAC 2009 Kalamazoo, to appear in Journal of Physics: Conference Serie

    Quantitative X-ray phase-contrast microtomography from a compact laser-driven betatron source

    Get PDF
    X-ray phase-contrast imaging has recently led to a revolution in resolving power and tissue contrast in biomedical imaging, microscopy and materials science. The necessary high spatial coherence is currently provided by either large-scale synchrotron facilities with limited beamtime access or by microfocus X-ray tubes with rather limited flux. X-rays radiated by relativistic electrons driven by well-controlled high-power lasers offer a promising route to a proliferation of this powerful imaging technology. A laser-driven plasma wave accelerates and wiggles electrons, giving rise to a brilliant keV X-ray emission. This so-called betatron radiation is emitted in a collimated beam with excellent spatial coherence and remarkable spectral stability. Here we present a phase-contrast microtomogram of a biological sample using betatron X-rays. Comprehensive source characterization enables the reconstruction of absolute electron densities. Our results suggest that laser-based X-ray technology offers the potential for filling the large performance gap between synchrotron- and current X-ray tube-based sources

    Radiotherapy for tumors of the stomach and gastroesophageal junction - a review of its role in multimodal therapy

    Get PDF
    There is broad consensus on surgical resection being the backbone of curative therapy of gastric- and gastroesophageal junction carcinoma. Nevertheless, details on therapeutic approaches in addition to surgery, such as chemotherapy, radiotherapy or radiochemotherapy are discussed controversially; especially whether external beam radiotherapy should be applied in addition to chemotherapy and surgery is debated in both entities and differs widely between regions and centers. Early landmark trials such as the Intergroup-0116 and the MAGIC trial must be interpreted in the context of potentially insufficient lymph node resection. Despite shortcomings of both trials, benefits on overall survival by radiochemotherapy and adjuvant chemotherapy were confirmed in populations of D2-resected gastric cancer patients by Asian trials. Recent results on junctional carcinoma patients strongly suggest a survival benefit of neoadjuvant radiochemotherapy in curatively resectable patients. An effect of chemotherapy in the perioperative setting as given in the MAGIC study has been confirmed by the ACCORD07 trial for junctional carcinomas; however both the studies by Stahl et al. and the excellent outcome in the CROSS trial as compared to all other therapeutic approaches indicate a superiority of neoadjuvant radiochemotherapy as compared to perioperative chemotherapy in junctional carcinoma patients. Surgery alone without neoadjuvant or perioperative therapy is considered suboptimal in patients with locally advanced disease. In gastric carcinoma patients, perioperative chemotherapy has not been compared to adjuvant radiochemotherapy in a randomized setting. Nevertheless, the results of the recently published ARTIST trial and the Chinese data by Zhu and coworkers, indicate a superiority of adjuvant radiochemotherapy as compared to adjuvant chemotherapy in terms of disease free survival in Asian patients with advanced gastric carcinoma. The ongoing CRITICS trial is supposed to provide reliable conclusions about which therapy should be preferred in Western patients with gastric carcinoma. If radiotherapy is performed, modern approaches such as intensity-modulated radiotherapy and image guidance should be applied, as these methods reduce dose to organs at risk and provide a more homogenous coverage of planning target volumes

    Folding of a donor–acceptor polyrotaxane by using noncovalent bonding interactions

    Get PDF
    Mechanically interlocked compounds, such as bistable catenanes and bistable rotaxanes, have been used to bring about actuation in nanoelectromechanical systems (NEMS) and molecular electronic devices (MEDs). The elaboration of the structural features of such rotaxanes into macromolecular materials might allow the utilization of molecular motion to impact their bulk properties. We report here the synthesis and characterization of polymers that contain π electron-donating 1,5-dioxynaphthalene (DNP) units encircled by cyclobis(paraquat-p-phenylene) (CBPQT4+), a π electron-accepting tetracationic cyclophane, synthesized by using the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The polyrotaxanes adopt a well defined “folded” secondary structure by virtue of the judicious design of two DNP-containing monomers with different binding affinities for CBPQT4+. This efficient approach to the preparation of polyrotaxanes, taken alongside the initial investigations of their chemical properties, sets the stage for the preparation of a previously undescribed class of macromolecular architectures

    Multiband diffusion-weighted MRI of the eye and orbit free of geometric distortions using a RARE-EPI hybrid

    Get PDF
    Diffusion-weighted imaging (DWI) provides information on tissue microstructure. Single-shot echo planar imaging (EPI) is the most common technique for DWI applications in the brain, but is prone to geometric distortions and signal voids. Rapid acquisition with relaxation enhancement [RARE, also known as fast spin echo (FSE)] imaging presents a valuable alternative to DWI with high anatomical accuracy. This work proposes a multi-shot diffusion-weighted RARE-EPI hybrid pulse sequence, combining the anatomical integrity of RARE with the imaging speed and radiofrequency (RF) power deposition advantage of EPI. The anatomical integrity of RARE-EPI was demonstrated and quantified by center of gravity analysis for both morphological images and diffusion-weighted acquisitions in phantom and in vivo experiments at 3.0 T and 7.0 T. The results indicate that half of the RARE echoes in the echo train can be replaced by EPI echoes whilst maintaining anatomical accuracy. The reduced RF power deposition of RARE-EPI enabled multiband RF pulses facilitating simultaneous multi-slice imaging. This study shows that diffusion-weighted RARE-EPI has the capability to acquire high fidelity, distortion-free images of the eye and the orbit. It is shown that RARE-EPI maintains the immunity to B0 inhomogeneities reported for RARE imaging. This benefit can be exploited for the assessment of ocular masses and pathological changes of the eye and the orbit
    • …
    corecore