84 research outputs found

    DeltaPhish: Detecting Phishing Webpages in Compromised Websites

    Full text link
    The large-scale deployment of modern phishing attacks relies on the automatic exploitation of vulnerable websites in the wild, to maximize profit while hindering attack traceability, detection and blacklisting. To the best of our knowledge, this is the first work that specifically leverages this adversarial behavior for detection purposes. We show that phishing webpages can be accurately detected by highlighting HTML code and visual differences with respect to other (legitimate) pages hosted within a compromised website. Our system, named DeltaPhish, can be installed as part of a web application firewall, to detect the presence of anomalous content on a website after compromise, and eventually prevent access to it. DeltaPhish is also robust against adversarial attempts in which the HTML code of the phishing page is carefully manipulated to evade detection. We empirically evaluate it on more than 5,500 webpages collected in the wild from compromised websites, showing that it is capable of detecting more than 99% of phishing webpages, while only misclassifying less than 1% of legitimate pages. We further show that the detection rate remains higher than 70% even under very sophisticated attacks carefully designed to evade our system.Comment: Preprint version of the work accepted at ESORICS 201

    Clinical Evaluation of an Auto-Segmentation Tool for Spine SBRT Treatment

    Get PDF
    Purpose: Spine SBRT target delineation is time-consuming due to the complex bone structure. Recently, Elements SmartBrush Spine (ESS) was developed by Brainlab to automatically generate a clinical target volume (CTV) based on gross tumor volume (GTV). The aim of this project is to evaluate the accuracy and efficiency of ESS auto-segmentation. Methods: Twenty spine SBRT patients with 21 target sites treated at our institution were used for this retrospective comparison study. Planning CT/MRI images and physician-drawn GTVs were inputs for ESS. ESS can automatically segment the vertebra, split the vertebra into 6 sectors, and generate a CTV based on the GTV location, according to the International Spine Radiosurgery Consortium (ISRC) Consensus guidelines. The auto-segmented CTV can be edited by including/excluding sectors of the vertebra, if necessary. The ESS-generated CTV contour was then compared to the clinically used CTV using qualitative and quantitative methods. The CTV contours were compared using visual assessment by the clinicians, relative volume differences (RVD), distance of center of mass (DCM), and three other common contour similarity measurements such as dice similarity coefficient (DICE), Hausdorff distance (HD), and 95% Hausdorff distance (HD95). Results: Qualitatively, the study showed that ESS can segment vertebra more accurately and consistently than humans at normal curvature conditions. The accuracy of CTV delineation can be improved significantly if the auto-segmentation is used as the first step. Conversely, ESS may mistakenly split or join different vertebrae when large curvatures in anatomy exist. In this study, human interactions were needed in 7 of 21 cases to generate the final CTVs by including/excluding sectors of the vertebra. In 90% of cases, the RVD were within ±15%. The RVD, DCM, DICE, HD, and HD95 for the 21 cases were 3% ± 12%, 1.9 ± 1.5 mm, 0.86 ± 0.06, 13.34 ± 7.47 mm, and 4.67 ± 2.21 mm, respectively. Conclusion: ESS can auto-segment a CTV quickly and accurately and has a good agreement with clinically used CTV. Inter-person variation and contouring time can be reduced with ESS. Physician editing is needed for some occasions. Our study supports the idea of using ESS as the first step for spine SBRT target delineation to improve the contouring consistency as well as to reduce the contouring time

    Clinical Evaluation of an Auto-Segmentation Tool for Spine SBRT Treatment.

    Get PDF
    Purpose: Spine SBRT target delineation is time-consuming due to the complex bone structure. Recently, Elements SmartBrush Spine (ESS) was developed by Brainlab to automatically generate a clinical target volume (CTV) based on gross tumor volume (GTV). The aim of this project is to evaluate the accuracy and efficiency of ESS auto-segmentation. Methods: Twenty spine SBRT patients with 21 target sites treated at our institution were used for this retrospective comparison study. Planning CT/MRI images and physician-drawn GTVs were inputs for ESS. ESS can automatically segment the vertebra, split the vertebra into 6 sectors, and generate a CTV based on the GTV location, according to the International Spine Radiosurgery Consortium (ISRC) Consensus guidelines. The auto-segmented CTV can be edited by including/excluding sectors of the vertebra, if necessary. The ESS-generated CTV contour was then compared to the clinically used CTV using qualitative and quantitative methods. The CTV contours were compared using visual assessment by the clinicians, relative volume differences (RVD), distance of center of mass (DCM), and three other common contour similarity measurements such as dice similarity coefficient (DICE), Hausdorff distance (HD), and 95% Hausdorff distance (HD95). Results: Qualitatively, the study showed that ESS can segment vertebra more accurately and consistently than humans at normal curvature conditions. The accuracy of CTV delineation can be improved significantly if the auto-segmentation is used as the first step. Conversely, ESS may mistakenly split or join different vertebrae when large curvatures in anatomy exist. In this study, human interactions were needed in 7 of 21 cases to generate the final CTVs by including/excluding sectors of the vertebra. In 90% of cases, the RVD were within ±15%. The RVD, DCM, DICE, HD, and HD95 for the 21 cases were 3% ± 12%, 1.9 ± 1.5 mm, 0.86 ± 0.06, 13.34 ± 7.47 mm, and 4.67 ± 2.21 mm, respectively. Conclusion: ESS can auto-segment a CTV quickly and accurately and has a good agreement with clinically used CTV. Inter-person variation and contouring time can be reduced with ESS. Physician editing is needed for some occasions. Our study supports the idea of using ESS as the first step for spine SBRT target delineation to improve the contouring consistency as well as to reduce the contouring time

    Target treatment with stereotactic radiation for recurrent gliomas

    Get PDF
    High grade gliomas (HGG) have a propensity to recur locally and have poor outcomes. As such, safe and effective treatment is paramount. Target treatment with stereotactic radiation allows safe re-irradiation through minimizing normal brain tissue radiation due to its high precision. In this review, we evaluated the clinical experiences using SRS and FSRT for re-irradiation in HGG. We report the radiobiological advantages and disadvantages of both modalities as well as the safety and efficacy published in current literature

    Evaluation of the reporting quality of clinical practice guidelines on gliomas using the RIGHT checklist

    Get PDF
    Background: The reporting quality of clinical practice guidelines (CPGs) for gliomas has not yet been thoroughly assessed. The International Reporting Items for Practice Guidelines in Healthcare (RIGHT) statement developed in 2016 provides a reporting framework to improve the quality of CPGs. We aimed to estimate the reporting quality of glioma guidelines using the RIGHT checklist and investigate how the reporting quality differs by selected characteristics. Methods: We systematically searched electronic databases, guideline databases, and medical society websites to retrieve CPGs on glioma published between 2018 and 2020. We calculated the compliance of the CPGs to individual items, domains and the RIGHT checklist overall. We performed stratified analyses by publication year, country of development, reporting of funding, and impact factor (IF) of the journal. Results: Our search revealed 20 eligible guidelines. Mean overall adherence to the RIGHT statement was 54.6%. Eight CPGs reported more than 60% of the items, and five reported less than 50%. All guidelines adhered to the items 1a, 3, 7a, 13a, while no guidelines reported the items 17 or 18b (see http://www.rightstatement.org/right-statement/checklist for a description of the items). Two of the seven domains, "Basic information" and "Background", had mean reporting rates above 60%. The "Review and quality assurance" domain had the lowest mean reporting rate, 12.5%. The reporting quality of guidelines published in 2020, guidelines developed in the United States, and guidelines that reported funding tended to be above average. Conclusions: The reporting quality of CPGs on gliomas is low and needs improvement. Particular attention should be paid on reporting the external review and quality assurance process. The use of the RIGHT criteria should be encouraged to guide the development, reporting and evaluation of CPGs

    Efficacy of Scalp-Sparing Volumetric-Modulated Arc Therapy Approach in Reducing Scalp Radiation Dose for Patients with Glioblastoma: A Cross-Sectional Study

    Get PDF
    BACKGROUND: Radiation is integral to the treatment of glioblastoma (GBM). However, radiation-induced scalp toxicity can negatively impact patients\u27 quality of life. Volumetric modulated arc therapy (VMAT) optimizes the dose to organs at risk (OARs). We hypothesize that a scalp-sparing VMAT (SSV) approach can significantly reduce undesirable doses to the scalp without compromising the target dose. METHODS: This is a retrospective cross-sectional study of GBM patients who originally received radiation with non-SSV. We contoured the scalp as a 5 mm rind-like structure beneath the skin above the level of the foramen magnum. We replanned our patients using SSV techniques. We compared dosimetric data for the scalp, planning target volume (PTV), and select critical normal structures between non-SSV and SSV plans. RESULTS: Nineteen patients with newly diagnosed GBMs were included in our study. All patients received 60 Gy in 30 fractions. 9 patients received it in a single course. The rest received 46 Gy in 23 fractions to an initial volume followed by 14 Gy in 7 fractions to a cone-down volume (split course). New VMAT plans were generated after adding the scalp as an OAR. The median scalp volume was 416 cm3 (363-468 cm3). The median reductions in scalp Dmin, Dmax, and Dmean were 43.5% (-100% to 0%), 2.8% (+13.4% to -24.9%), and 15.7% (+2.1% to -39.9%) respectively. Median reductions in scalp D20cc and D30 cc were 19.5% (-2.7% to -54.5%), and 19.0% (-5.3% to -39.5%) respectively. The median volumes of the scalp receiving 30 Gy, 40 Gy, and 50 Gy were reduced by 42.3% (-70.6% to -12.5%), 72% (-100% to -2.3%), and 92.4% (-100% to +5.4%) respectively. There were no significant differences in the doses delivered to the PTV, brainstem, optic nerves, and optic chiasm between SSV and non-SSV plans. CONCLUSIONS: SSV can significantly reduce scalp radiation dose without compromising target coverage or critical normal structure doses. This may translate into reduced acute and late radiation toxicity to the scalp. A prospective trial evaluating the clinical benefits of SSV is ongoing (NCT03251027)
    corecore