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Abstract— Vehicular social networking is an emerging appli-
cation of the Internet of Vehicles (IoV) which aims to achieve
seamless integration of vehicular networks and social networks.
However, the unique characteristics of vehicular networks, such
as high mobility and frequent communication interruptions,
make content delivery to end-users under strict delay constraints
extremely challenging. In this paper, we propose a social-aware
vehicular edge computing architecture that solves the content
delivery problem by using some vehicles in the network as
edge servers that can store and stream popular content to
close-by end-users. The proposed architecture includes three
main components: 1) the proposed social-aware graph pruning
search algorithm computes and assigns the vehicles to the
shortest path with the most relevant vehicular content providers.
2) the proposed traffic-aware content recommendation scheme
recommends relevant content according to its social context.
This scheme uses graph embeddings in which the vehicles are
represented by a set of low-dimension vectors (vehicle2vec) to
store information about previously consumed content. Finally,
we propose a deep reinforcement learning (DRL) method to opti-
mise the content provider vehicle distribution across the network.
The results obtained from a real-world traffic simulation show
the effectiveness and robustness of the proposed system when
compared to the state-of-the-art baselines.

Index Terms—]IoV, vehicular social networks, path planning,
social computing, vehicular edge computing, content caching,
social-aware.
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I. INTRODUCTION

ITH the emergence of the Internet of Vehicles (IoV) as

a new networking paradigm that interconnects vehicles
with the ubiquitous Internet of Things (IoT) network and the
increasing adoption of the 5G network in many countries, the
vision of the intelligent transportation system (ITS) is closer to
realisation than ever. The IoV network is expected to enhance
many applications and offers a wide range of services, ranging
from essential emergency services to entertainment service
applications. There are currently more than 1.4 billion vehicles
worldwide, and it is expected to reach three billion in 2037 [1],
which will worsen the existing traffic congestion problem.
As more and more people spend hours in traffic congestion,
they turn to social media and other entertainment services to
spend the waiting time [2]. The IoV can offer an alternative to
connect the users with the Internet and seamlessly interconnect
their existing social networks to a vehicular social networking
model that brings social content near to passengers and reduce
the expensive access to the 4G/5G networks.

One of the most challenging problems in a vehicular social
networking model is the difficulty of seamlessly accessing
social network content without interruptions and delivery
delays. In vehicular networks, the content can be delivered
through Vehicle to Infrastructure (V2I) communication with
the Roadside Units (RSU) connected to the Internet or through
cellular base stations using 4G or 5G networks. The former is
reasonably cheap and convenient communication but suffers
from difficult access and sparse RSUs. Vehicles must rely on
Vehicle-to-Vehicle (V2V) communications to overcome sparse
RSUs. The latter has the advantage of wide coverage and
instant access, but it has expensive communications [3]. The
intuitive approach is to store the content of social networks
on a cloud server, and the vehicles can access it through
V2I communications or by downloading it using 4G or 5G
cellular networks. Nonetheless, V21 communications are not
appropriate for live streaming due to the high speed of vehicles
and the frequent disconnections between vehicles and RSUs
[4]. On the other hand, the vehicle-to-base station communi-
cations are more stable compared to V2I communications but
not suitable for downloading large files due to the high costs
of those network usage [5].
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We propose a traffic-aware Vehicular Social Network
(VeSoNet) content caching architecture that exploits the vehic-
ular edge computing paradigm to deal with the above lim-
itations. VeSoNet stores the most popular social content in
vehicles and brings it near the end-users for future use. In the
following, we summarise our contributions:

« We proposed a social-aware hybrid content distribution
scheme, where only the popular data content is replicated
and stored in vehicles to minimize the access time. The
content provider vehicles architecture is based on the
vehicular edge computing paradigm.

« We developed a social-aware graph pruning search algo-
rithm that computes and assigns the content consumer
vehicles to the shortest path with the most relevant
content and uses a Deep Reinforcement Learning DRL
model to optimize content distribution across the network.

o We developed a traffic-aware content recommendation
approach based on graph embeddings, called vehi-
cle2vec, where vehicles are represented by a set of low-
dimensional vectors based on their previously consumed
content.

The rest of the paper is organized as follows: In Section II,
we reviewed the literature on content caching and delivery
using vehicular edge computing paradigm and social vehicular
networks. In Section III, we presented the main components
of the proposed vehicular network architecture. Section IV
details the system modelling of the proposed system. While
in Section V, we presented the experimental evaluation and
discussed the obtained results. Finally, we concluded and gave
some future work in Section VI.

II. RELATED WORK

Various studies have proposed different system architec-
tures for content delivery in vehicular networks. Dzyiaud-
din et al. [11] surveyed computational offloading, content
delivery and caching in vehicular edge computing, including
the architecture, communication layers and applications of
vehicular edge computing for content delivery and caching.
Zhang et al. [10] introduced a social-aware mobile edge
computing architecture for content caching. They employed
the DRL model and proposed a method to take advantage of
the relationships among vehicles and RSUs to perform content
dissemination with diverse vehicular social characteristics for
urban environments. Moreover, they extended their model by
introducing digital twin technology to map the edge caching
system into cyberspace [12]. They used the vehicular cloud
to coordinate the correlations of the cached content among
multiple vehicles, then employed the deep-learning approach
for route selection, taking into account the social context,
the vehicular cloud formation and cache resource allocation.
Similarly, Qiao et al. [13] introduced a cooperative vehicular
edge caching system to optimize the content delivery and
placement within a vehicular edge computing environment,
with the aid of flexible cooperation between cellular stations,
RSUs, and vehicular nodes. The optimization problem is
formulated as a double-time-scale Markov decision process
(DTS-MDP). Zhou et al. [14] introduced a new content
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delivery architecture by utilizing the 5G edge networks,
where the content caching and data pre-fetching methods
are discussed. Furthermore, they studied the comprehensive
dynamic link utilization problem in 5G edge networks from
the perspectives of network operators and vehicle users. Luo
et al. [15] introduced an intelligent algorithm (EdgeVCD) that
is based on a content distribution mechanism. It uses a dual-
importance (DI) evaluation method to reflect the relationship
between the Priority of Vehicles (PoV) and the Priority of
Contents (PoC) and formulate an optimization problem to
maximize the system utility for content distribution.

De Souza et al. proposed a Safe and Sound (SNS) approach,
which uses a hybrid architecture and cooperative re-routing
method to enhance the system performance and scalability
[6]. SNS utilizes a recurrent neural network (RRN) to predict
future safety risk dynamics and to offer a customized re-
routing in which every vehicle chooses the risks to avoid.
When the traffic server detects a congested road, it notifies the
incoming vehicles by sending the traffic report to all vehicles
having their paths crossing this road segment. The SNS re-
routing strategy objective is to balance the traffic flow over a
set of alternative routes for each vehicle based on their current
and final positions and preferences. Soua et al. proposed a
vehicular social networking architecture that combines the
content-centric networking (CCN) model, Floating Content
(CF), and Software Defined Networking (SDN) to offer a
multi-pronged approach for adaptive content delivery [8].
Each content includes the location and name of the requester.
Intermediate nodes that receive the requester message check it
in their local content store (CS). If the requested content is not
available in CS, they forward the message and trigger a timer.
The FC is used to support geographic content routing. An SDN
controller operates a direct path between the content requester
and the provider, similar to the dynamic unicast method.
Alowish et al. proposed content delivery architecture for
vehicular networks called Cuckoo, in which the RSU delivers
the user content via controller nodes [7]. In other words, RSU
selects the optimal routing path to the provider location with
the help of controller nodes. Moreover, Zhao et al. proposed
DP-IB, a vehicular content delivery system that uses a data
pouring and buffering mechanism for content dissemination in
VANET. The source node sent data contents, buffered along
the selected path, and rebroadcasted in the road intersections
[9]. The main idea behind Data Pouring (DP) is instead of
broadcasting the content to the entire network. The system
only sends the disseminated content to a few road segments
known as axis roads (A-roads). Usually, A-roads segments
have denser traffic flow than other roads and are chosen as
main roads. Intersection Buffering (IB) means that the scheme
disseminates the content to nodes travelling along the crossing
roads (C-roads) intersecting the A-roads.

To deal with the privacy leakage problem in social vehic-
ular networks, Zhang et al. introduced a distributed location
privacy-preserving spatial crowdsourcing method for IoV [12].
It enables vehicular nodes to be involved in spatial crowd-
sourcing and guarantees the privacy of location information.
They employed blockchain to record the user data without
requiring a centralized spatial crowdsourcing server. In [13],
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TABLE I
COMPARISON BETWEEN VeSoNet AND SIMILAR SCHEMES
System Vehicle rerouting Content caching Content recommenda- | Content delivery Incentive
tion method
SNS[6] Risk-avoidance rerouting No No No Safe routes
Cuckoo [7] SDN-based route selec- | No Policy-based bifold classi- | Best forwarder selection No
tion fier
CCN-CF [8] No SDN controlled on- | No SDN-based path between | No
demand caching a requester and a content
source
DP-IB [9] No Intersection Buffering No Data pouring in main | No
roads
Zhang et al | No Vehicular edge caching No Content dispatch using ve- | No
[10] hicular edge mechanism.
VeSoNet Social-aware rerouting popular content replica- | Traffic-aware content rec- | Content provider vehicles | Monetized
tion ommendation path planning content

the authors investigated the use of blockchain and smart con-
tracts to improve data storage security during content sharing
among vehicles in vehicular edge networks. They concluded
that blockchain technology could achieve content sharing. Fur-
thermore, they introduced a reputation-based content-sharing
scheme to guarantee the quality of the shared data among
vehicular nodes.

VeSoNet has many novel characteristics that existing sys-
tems do not have. Table I compares VeSoNet with similar
vehicular network systems on five main criteria: content
rerouting, caching, recommendation, delivery, and security.
VeSoNet has an efficient rerouting strategy and is the only
system that considers the social interest of the users. It brings
relevant content to users without congesting the network.
Others focus mainly on traffic congestion and travel time
without considering social interests. VeSoNet distributes the
content across the road network to optimise delivery. Unlike
other systems that pour the content into main roads, such as
DP-IB and CCN-CF, without considering the distribution of
content providers’ locations. VeSoNet replicates only popular
content to reduce the download time, while other schemes
do not handle it. We can make the same observations for the
criteria content-recommendation and security. VeSoNet is built
around traffic-aware recommendations and monetised content,
which others do not consider.

III. VEHICULAR EDGE ARCHITECTURE

The two common ways of delivering content in vehicular
networks are V2I connection or cellular base stations using a
4G/5G interface [16]. The former is cheap and has a simple
communication model, but it is not easy to directly access the
content. The vehicles rely on V2V communications to reach
the sparse RSUs [17]. The latter has the advantage of better
coverage and instance access, but at the expense of expensive
communications. To deal with these issues, VeSoNet imple-
ments a hybrid data distribution approach, where only popular
data content is replicated and stored in vehicles to avoid
excessive simultaneous downloads from 4G or 5G networks.
In this regard, we distinguish three types of vehicular nodes: 1)
Consumers form most vehicles in the network and represent
the system end-users. 2) Provides store social content. The
objective is to maximize the delivery to consumers as they

travel through the city. 3) Meta-data vehicles, situated in
busy locations of a city, provide information about content
locations and perform various tasks, such as shortest social
path calculation, content similarity, etc.

Fig. 1 illustrates an example of such a system. Consumer,
provider, and meta-data server vehicles are represented in
yellow, blue, and green, respectively. Meta-data servers are
in busy locations, such as parking lots, where they are always
present and not moving frequently, which ensures the quality
of content lookup service. Meta-data servers maintain a table
that contains a list of available contents in the network and
a list of providers. The providers send frequent location and
expected path updates to meta-data servers. The VeSoNet
system follows Information-Centric Networking (ICN) model.
When a consumer requests a given content, it creates a packet
regarding the desired information that contains the content
identifier and traffic information of the requesting vehicle,
such as the expected travel path. The message is sent to
all neighbouring nodes and forwarded to other nodes until it
reaches the provider. When an intermediate node receives that
packet and does not store the requested content, it forwards
it to the nearest meta-data servers. If the providers do not
have the requested content, RSU downloads it from an external
network and forwards it to the requester. The providers back
it up for future use.

IV. SYSTEM MODELING
A. Consumers Path Planning

The proposed framework leverages traffic information and
dynamic changes in vehicles’ travelling paths to bring the
consumers close to providers, enhancing the content delivery
experience. As a provider takes the same path as consumers,
the delivery delay is significantly reduced. For instance,
in Fig. 2, a consumer is travelling from the source location
(S) to the destination location (D). Although path P; is the
shortest path, the system recommends P, since it contains
more providers and does not exceed the rerouting threshold
as P3 does.

Let Py, = {Iy — Iy,...,1,, — I} be the shortest
path based only on traffic information, without considering
the availability of the providers. I; and I; are the starting
intersection (source intersection) and destination intersection,
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Fig. 2. Social path selection.

respectively. The objective is to find an alternative social-aware
shortest path P, that maximizes the number of providers for
a vehicle during its trip, subject to the difference between
shortest travel time t (Psy) and social path 7 (Ps,) is less
than a threshold €. A naive approach is to find the shortest
paths between I; and I;, then consider the social path that
maximizes the number of providers and satisfies the threshold
&. However, this approach is computationally expensive. So we
proposed a graph pruning search algorithm that computes the
social path as presented in Algorithm 1.

The proposed method is computationally efficient, as it uses
a path pruning technique to eliminate the paths that exceed the

Algorithm 1 Shortest_Social_Path
Inmput Py, ={I; — L1, ..., Ly — 13}
Output P, = {1, —

Iyr, ..., Iy, —
14}

I: Py < {Is g le}

2 Nepr < I

3: while n.,, # Iz do

4: Npext < Pyp [next (neyr)]

5. Premp < AlternitiveSocial Path(neyr, Npext)

6 Ppar < AlternitiveSocial Path(Iy, npexr)

7 Pean < Pso[Is ~ neyr] U Ptemp

8 if 7 (Ppar) — T (Pean) < ¢ then
9 if |Providers (Pean)| < |Pr0viders (Ppar)| then

10: Pso < Ppar

11: else

12: Pso <= Pso U Prepp
13: end if

14:  end if

15:  Reyr < Pgo[Last]
16: end while

path optimization threshold ¢, hence reducing the search space.
The Algorithm takes as input the traffic-only paths and goes
through each road segment by keeping track of the current
intersection n.,, (the current node) and the next intersection
Npex: (next node). Prepp (temporary social path) is defined as
the optimal social path between n.,, and n,.y; that satisfies the
threshold. Pp,, (partial social path) is defined as the optimal
social path between the starting intersection I; (source node)
and the next intersection 7n,,ys. Pcqn (candidate social path) is
defined as the optimal social path from the starting intersection
I to the next intersection n,.y; and the temporary social path
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Ptemp. Note that this path is dynamically changing, as the
alternative social-aware shortest path Py, is constantly updated
over time. If the newly found partial social path P, satisfies
the path optimization threshold (t (Ppar) — T (Pean) < €), and
the number of providers in P, is higher than Py, then Py,
is set as Ppqr. Otherwise, Py, is updated to include the newly
found Pyepp. During a travel journey, VeSoNet keeps track of
the current optimal path P,,, and its travel time #,,, providers
$0ops, and a set of the previously visited nodes VIST. This
dynamic tracking and efficient way of finding and accessing
social content make VeSoNet more reliable, scalable, and
efficient. To do so, VeSoNet implements a set of incremental,
efficient, and complementary algorithms. For instance, the
Algorithm 2 finds an alternative social path between two
intersections. The social graph pruning Algorithm 3 reduces
the search space. The algorithm starts from the last node of
the input path P and considers it as the current node ncy;.
It checks whether the current node has not been visited before,
or if it has been visited but there is a shorter travel time with
more content providers (Lines 2-15). In this case, It evaluates
all neighbours of the current node 71 (n¢,;) (Lines 4-13). Firstly
it computes the new travel time #,.,, and checks whether #,¢,,
is still less than the path optimization threshold ¢. In that
case, it computes the new count of content providers soyey
and recursively runs a graph pruning procedure on the new
path (P U {ncyr ~> nNpext}). Otherwise, if the current road
segment exceeds the path optimization threshold ¢, the node is
considered as visited (Lines 10-12) without going through its
branches, hence the search space is considerably minimized.
This reduces the computational cost of finding an alternative
social-aware path. Finally, if the current node is the destination
intersection (n., = d), the algorithm checks the travel time.
If it is shorter than that of shortest the path (Psj), then P is
considered as an optimal social path.

Algorithm 2 Alternative_Social_Path

Input s, d

Output P,

Popt < Psp [s ~ d]

Topt < T(Pyp [s ~ d])

S0ops < |Providers (Pg [s ~ d])|

VIST < {(s,0)}

SOCIAL_GRAPH_PRUNING({s}, d, 0, 0)
RETURN P,

AN U A

B. Traffic-Aware Content Recommendation

Given a provider vehicular node v, that stores a set of social
content items ¢, = {cx1 2 Cxys e ey CX/'} and takes the path p, =
{ixi+ixys ... ix }. Consider consumer vehicles A (vy) when vy
crosses p.. At each traffic light of the road intersections in
Px» Uy requests the recommended content items from nearby
providers (neighbourhood). Let vy be a nearby provider that
stores a set of social content items ¢, = {cy1 ' Cyys ...,cyj}.
The question is which items in ¢, are more likely to be
viewed/liked by the consumer vehicles A (vy).

Algorithm 3 Social_Graph_Pruning

Input P.d,t, so

Output P,y
. neyr < P[Last]
o if (neur ¢ VIST) OR ((ney, € VIST)

AND (VIST [ncyr.t] <t) AND (VIST [ncyr.so] > so) then
3 if neyr # d then
4 for all n,exs € n(neyr) do
5: thew <t + T(Mcur ~ Npext)
6: if thew < T(Pg[s ~ d]) then
7.
8
9

[\

SOpew < S0+ Providers(neyr ~ Npext)
VIST < VIST U {ncur, thew, SOnew}
SOCIAL_GRAPH_PRUNING

(P UA{ncur ~ nnext},d, thew S0new)

10: else

11: VIST < VIST U {ncur, thew, SOnew}
12: break

13: end if

14: end for

15: else

16: if t < ©(Psp [s ~ d])) and (so < s0opt) then
17: S0opt < 50

18: Popt < P

19: RETURN Py

20: end if

21: end if

22: end if

We formulate this question as a link prediction problem to
predict the potential links between the previously consumed
content and the available content in nearby provider vehicles.
Since the waiting time in intersections is relatively short, the
classical filtering recommendation methods, such as matrix
factorisation, are not suitable because these methods have
high computational complexity and require knowledge of all
vehicles’ consumption history in the system.

Therefore, we propose a graph embedding-based content
recommendation approach called Vehicle2vec, where the vehi-
cles are represented by a set of low dimensional vectors of the
previously consumed content. Vehicle2vec starts by learning
the feature representations of each content available in the
system. The content network is represented as a graph data
structure, where the nodes represent the data content, and the
edges represent the content similarity between these nodes.
Vehicle2vec learns the content node low dimensional vector
that preserves the neighbourhood of nodes in the original
graph [18]. To build such content node embeddings, vehi-
cle2vec uses stochastic gradient descent (SGD) to optimize
the objective function, hence learning the low dimensional
representation.

Let the content network be represented as a connected graph
G. = (V., E.), where V, is a set of nodes and E, C (V. x V)
a set of edges between nodes. The objective of network
embedding learning is to represent each node c € V. as a
vector of low dimensional space R?. It involves evaluating
the mapping function f. : V. — R<, where d < |V,| is
the number of features in low-dimensional space, and the
original network structure is preserved. For each node c € V,
we compute the content network neighbourhood N(c¢) C V.
that represents semantically similar data content. We use the
Skip-gram model of networks. Hence, the mapping function
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fc is evaluated by optimizing the objective function given in
the equation (1).

max > log PrN(e) | fe(c)] (1)
ceVe

According to the symmetry property in the feature space,
the proximity between every pair of nodes is symmetric.
Therefore, the conditional likelihood between every content
node and its neighbours can be modelled using a softmax
function, as given in the equation (2).

e(fc (n;) fe(c)
S eem©)

Pr(ni | fe(0) = 2)

A consumer vehicle is associated with its Vehicle2vec
matrix representing all embedding features of the previously
consumed content. The recommendation method is given in
Algorithm 4. v, is the provider that takes the path p,. For each
intersection in py, v, checks the content available in every
neighbour vy, and computes its similarity with its expected
consumers A (v, ). if the similarity is above the content simi-
larity threshold «, then that content item is downloaded during
the intersection waiting time.

Algorithm 4 INTERSECTION_RECOMMENDATION
Input v,, P,
Qutput R,
1: for all vy in i, do
for all vy in i, do
for all ¢; in v, do

for all m € vehicle2vec(A (vy)) do
if (Zkem sim(vec(k),vec(c;))

[m]
Ry < R U{cj}
end if
end for
end for
10:  end for
11: end for

2
3
4
5: > o) then
6
7
8
9

C. Content Provider Distribution

Finding optimal routing from content providers to con-
sumers is known as the vehicle routing problem (VRP). VRP
is NP-hard [19]. Various meta-heuristic algorithms have been
proposed to find sub-optimal solutions, such as the firefly
algorithm [20], genetic algorithm [21] or hybrid meta-heuristic
algorithms [22]. In addition, these meta-heuristic algorithms
assume stable traffic conditions. Unlike traditional VRP, in the
problem at hand, the traffic flow is constantly changing over
time. In other words, one needs to find near-optimal solutions
to a VRP with dynamic traffic conditions.

Given a content provider vehicle vy, travelling from starting
position PoS; to PoSp taking the path p,, the objective is
to optimize the revenue generated from the advertisements
delivered to consumers. An intuitive approach would be
to choose a road that maximizes the number of consumer
vehicles, but when the same road contains many provider

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

vehicles, it cannot optimize its revenues. We define content
deliverability, C D(ry, t;), in road segment r, at time slot #,
as the difference between the number of consumers (CC) and
number of providers (CP), (see equation (3)).

CD(ry, 1) = CC(ra, ) — CP(rx, 1) 3)

To deal with the dynamic traffic conditions and time con-
straints, we propose a distributed method that exploits Deep
Reinforcement Learning (DRL) to find sub-optimal solutions
to the problem of delivering the content to consumers. The
reinforcement learning model evaluates the actions that change
the system state at each step through reward and punishment.

In the proposed social-aware DRL model, the system states
represent the current road segments and content deliverability.
An action represents a decision taken by a provider at a road
intersection during its travel path. The provider’s objective is
to optimize content deliverability. The reward is the difference
between the old and new content deliverability (after executing
an action) (Equation (4)).

r = Oc¢q — Nea 4

The proposed model is trained using the Deep Q-Network
(DQN) approach. We use a Q-learning system to choose an
optimal option for all (action, state) pairs by evaluating the
Q value of that action, Q(s,,as) (see equation (5)), where
s, represents the previous state, a, the previous action, r the
corresponding reward of that action, and y the discount factor.

O(sn, as) = Q(so, ap) + B(r +y Qsn, as)) — Q(so, ao)
)

The input is fed into a multilayer neural network that is used
as a function that maps the system state to the corresponding
Q-value. After the training, the network is used to predict the
optimal action to take in a given situation in order to maximize
the content deliverability reward r. In every intersection,
a provider is aiming to take the optimal action in current state
s as shown in (6), where Q(s, a) is the list Q-values yielded
from the neural network output; Therefore, VeSoNet chooses
the action that yielded the maximum rewards, as shown in (7)
where s, a are the current action and state.

O (s, as) < r(sn, as)+ymflx (s, a) (6)
a = argmax; Q(s, a) (7

The content providers execute an epsilon-greedy policy,
where they either take random actions or actions suggested by
Q-network. It uses the loss function to compute the squared
difference between the predicted and target values, hence the
loss is minimized by updating the network weights [23],
as shown in (8), where {6;} and ;" are the weights of the
Q-network at iteration (i).

Li@) = +ymax QG.&:67) — Q(s.a:6))°  (8)

V. EXPERIMENTAL EVALUATION

System evaluation is challenging, mainly when it involves
ML/AI components. Many techniques have been developed
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TABLE II TABLE III
SIMULATION PARAMETERS DRL PARAMETERS
Parameter Value Parameter Value
PHY model IEEE 801.11p Episodes 10,000
MAC model EDCA Greedy exploration rate 1 —0.05
Propagation model Two rays Discount factor 0.99
Fading model Rayleigh fading Network update / learning step | 3000
Antenna model Omnidirectional Number of actions 4
Shadowing model LogNormal States Dynamic
Channel frequency 5.890e9 Hz Learning rate 0.0001
Propagation distance | 450m Replay memory size 10,000
Transmission power 20 mW Batch size 32
Maximum hop count | 15
Scenario map London
Scenario area 5km?

depending on the type of evaluation and system at hand.
User testing and simulations are among the most common
evaluation techniques. User testing is valuable, but one cannot
rely solely on it to get a good evaluation of large systems
with complex behaviours. Simulation approaches are well-
suited to evaluate large and well-defined systems that use
detailed modelling. Implementing a dedicated simulator for
a given system is not straightforward and time-consuming.
Fortunately, many freely available and open-source simulators
can be used to evaluate the various parts of the system and
study its performance. We used two different simulators to
evaluate three different parts of the system: social content
network, vehicular network, and urban mobility traffic com-
ponents. More precisely, we use the urban mobility (SUMO)
simulator to generate the traffic [24], the OMNeT++ network
simulator [25], the vehicular network framework Veins on top
of OMNeT++ [26]. We give more details about each of them
in the following sections.

A. Experiments and Dataset

As a case study, we use a real-world map of Greater
London to simulate the traffic. OpenStreetMap allows us to
extract the map raw data [27]. We process further the map
(using the Netconvert tool) to generate the road network.
SUMO takes as input the road network to generate the traffic
data. Table II shows a detailed description of the network
simulation parameters. We use the dataset “Last. FM” [28]
to simulate the social network content. The dataset contains
the social networking and music-listening information of more
than 2000 users. Vehicles are randomly placed on the map, and
they travel to randomly chosen destinations. Each vehicle is
randomly linked with two users from the “Last. FM” dataset,
and we consider them as passengers within that vehicle. Once
a vehicle is added to the simulation, we measure the shortest
path to its destination point and estimate the required travel
time, and then it is routed according to the shortest social path
as per the proposed algorithm.

VeSoNet uses a neural network composed of four layers,
the input and output layers, in addition to two fully con-
nected hidden layers, the hidden layers have 150 neurons and
100 neurons respectively, and both use RELU as an activation
function. We used the experience replay strategy to update
weights during the updating process. As presented in Table III,

the number of performed episodes in SUMO is 10,000 with
0.0001 set as the learning rate in order to train a vehicle agent.
The discount factor for the reward is 0.99, and the greedy
exploration rate is decreased from 1 to 0.05 to balance the
trade-off between exploration and exploitation [29]. VeSoNet
creates a stacked memory that consists of the old state, old
action, reward, and current state, and to store transactions,
the reply memory size is set as 10,000 and the batches for
training as 32 [19]. The priority exponent is set as 0.6, whereas
the sampling for prioritization importance is increased from
0.4 to reach 1. We apply Xavier initialization [30] to initialize
all the trainable parameters. For the training and testing,
we used 10-fold cross-validation, where the training testing
split ratio is 80:20. The neural network learns the parameters
by training, and the final network is ready after the training
process. When VeSoNet’s DRL module is well-trained by
experience, a vehicular agent processes the current state of
the intersection and computes the content deliverability of each
road segment and the number of available data providers and
data consumers, and checks if the appropriate action is present
in replay memory, and predict the best action in the current
situation.

B. Baselines and Metrics

As mentioned in the literature review, some existing systems
are close to VeSoNet. These include Cuckoo [7], Safe and
Sound (SNS) [6], CCN-CF [8], and DP-IB [9]. As VeSoNet
has different architecture and operates in a scalable and
dynamic environment, we conducted a comparative study to
evaluate the effectiveness of its innovative features compared
to these systems. We use the following metrics to evaluate the
system performance:

Delivery Delay (DD): is the time required to deliver the
requested content. Formally, DD is the time elapsed from the
time the content was requested 7)., to the time when it was
received T, (Equation (9).

DD = Trec - Treq (9)

Delivery Rate (DR): is the ratio of successfully delivered
content Cg4e by the total requested content Cy.q, (Equation
(10)). This measure is considered the system precision per-
formance metric. It assumes that the system has a maximum
threshold above which one can declare that the content is not



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
——F— VeSoNet:GDUE —* VeSoNet-DRL
190
e 9 ot
N
160 ;g 0.9 - o
L\L 7 80 - T
— y -
< I 08 —
el | / | -
& \ [ y [ -
3 T > X T a £ / %
I i\ gor / AT g 60 T
2 100 “JW ‘E /x / @ 7./ "
s i 306 [ ¥ g 50 / 7
o 75 X\ & x / D e
g \L g / g 40 / 7
g \ z f zor / X
Z 50 \ 08 / / /
# of 4 /
- { { /
25 — 04 /
——e— 20 A
10 <
M N . 10 . o
10 100 200 300 400 500 600 700 800 900 1000 10 100 200 300 400 500 600 700 800 900 1000 10 100 200 300 400 500 600 700 800 900 1000
Traffic density (vehicle/kmz) Traffic density (vehicle/kmz) Traffic density (vehicle/kmz)
Fig. 3. Comparing VeSoNet-DRL and VeSoNet-GDUE in terms of (a) delivery delay (b) delivery rate (c) travel time.
—&—— Cickoo —#—— DP-IB CCN-CF —+— SN§  ———— VeSoNet
@) ®) )
190 140
130 #
120 A .
- e 160 120 *
=10 w = N
& 10 7 z ] b . *
& . X \
-5 K 5 130 é =100 G A
o 90 J = i\ o NN \
i = i | - N %
Z -~ . Sio0 4 £ 80 N X\
60 AT A s En \ *
S sp A i g 60 \4\\
x - —# g 2 * h %
40 - E 50 = —e, "
- 5 N
0 - 40 Hese \’P\ *
0 o s S
25 —
10 o 20
5 10 20 30 40 50 60 0 10100 200 300 400 3500 600 700 800 900 1000 15 10 15 20 25 30 35 40 45 50
Velocity (m/s) Traffic density (vehicle/km?) RSU count

Fig. 4. Comparing average delivery delay under (a) increasing velocity (b) increasing traffic density (c) different RSUs count.

delivered and the request is either reissued or abandoned.

_ Caell
|Creql

Travel time (TT): is the time required to travel from
the starting location to the destination location. This metric
measures the additional travel time eventuated by taking an
alternative social path rather than the shortest travel path.
It is the difference between the arrival timestamp T7j,,, and
departure timestamp Ty, (Equation (11)).

DR

(10)

TT =Ty — (11

Computational Cost: is the number of operations
required to perform the computational task of the system,
such as path rerouting, content recommendation and traffic
prediction.

Tdep

C. Results Analysis

To evaluate the effectiveness of deep reinforcement learning
for optimizing the content provider vehicles’ path planning,
we have compared VeSoNet when applying deep reinforce-
ment learning for path planning with VeSoNet when applying
Gawron’s Dynamic User Equilibrium (GDUE) [31] for content
provider vehicles path planning. GDUE is one of the default
models in SUMO, it uses Dynamic Traffic Assignment (DTA)
to model the traffics via a discrete time-dependent network,
and it assigns content provider vehicles using the shortest
path algorithm, regardless of the number of content consumer

vehicles in the shortest path’s roads. Figure 3 shows the aver-
age content delivery delay, average content delivery rate and
average travel time of content provider vehicles when using
VeSoNet-DRL and VeSoNet-GDUE. In Figure 3 (a), in low-
density scenarios both systems have long delivery delays and
lower delivery rates due to connectivity problems when few
fast-moving vehicles are simulated, but with the increase of
the number of vehicles the average delivery delay significantly
decreases and delivery rate increases as the content can be
delivered easily in dense environments. VeSoNet-DRL has
a lower delivery delay and higher delivery rate across all
settings because the trained agent chooses the most appropriate
path that maximizes its content deliverability by choosing
routes according to the availability of content the consumer
and content providers vehicles in each road. On the other
hand, in VeSoNet-GDUE content provider vehicles choose the
shortest path, even if that path will diverge them away from
their content consumers, which increases the delivery delay.
Similarly, the average travel time is significantly higher in
VeSoNet-GDUE compared to VeSoNet-DRL, that is because
the roads get congested when all the content provider vehicles
choose the shortest path to their destinations.

Fig. 4 shows the average delivery delay in different settings.
In Fig. 4 (a), we increase the velocity of the vehicles and
observe the delivery delay. We can see that all systems have
relatively high delivery delays in low-velocity environments
(less than 20m/s). Because in low-velocity environments, con-
tent deliveries are slowed down in store-and-carry situations
when there are no nearby vehicles. Moderate velocity settings
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(25m/s to 45 m/s) yield the shortest delivery delay for all
systems. While in high-velocity cases (more than 45 m/s), the
delivery delay increases again. This is because of frequent
disconnections due to high velocity, which makes it hard to
establish V2V communications, hence increasing the delivery
time of content requests and replies. Also, we can observe
that VeSoNet, SNS and Cuckoo) outperform CCN-CF, as it
does not leverage path planning or vehicle rerouting, and DP-
IB, which relies on the A-roads and C-roads intersections to
deliver the content. In Fig. 4 (b), we increase the traffic density
and observe its impact on the delivery delay. We can see that
all systems have longer delivery delays in low-density envi-
ronments (10-50 vehicles). Because, in sparse environments,
it becomes hard to route messages between vehicles. They
need to travel long distances to find other content providers.
However, the delivery delays are shortened considerably in
high-density environments (more than 100 vehicles). VeSoNet
still has the upper hand compared to other baselines due
to the social-aware rerouting strategy and popular content
replication method. As the density increases, the demand for
such popular content increases accordingly, which contributes
to the decrease in average delivery delays. Fig. 4 (c) shows the
average delivery delays while varying RSUs. The objective is
to study the system behaviour in case of network failures and
its ability to work in infrastructure-less environments. With
a high RSUs count, all the baselines have similar delivery

delays. However, as the RSUs count decreases, we can see
that VeSoNet outperforms other systems. Where most popular
contents are stored in providers, distributed across the network,
and indexed in meta-data servers, consumers request and get
the content through V2V without V2I communications. DB-IP
has the worst performance, as it mainly depends on RSU to
broadcast the content in A-roads, and as the number of RSU
decreases, so does the number of A-Roads, hence the number
of intersections between A-roads and C-roads decreases as
well.

In Fig. 5 (a), we vary the velocity of the vehicles and
observe the delivery rates. We can see that all the systems have
high delivery rates in low to medium-velocity environments
and vice-versa. Because V2V communications frequently dis-
connect, hence reducing the delivery rate. VeSoNet, SNS,
and Cukoo still perform better than the others for the same
reasons mentioned above. In Fig. 5 (b), the density of the
vehicles is varied to measure its impact on the delivery rate.
We can see that all systems have a relatively low delivery
rate in low-density environments (less than 100 vehicles).
Because in sparse environments, it becomes challenging to
forward messages to vehicles. These results are consistent with
the first experiment. Fig. 5 (c) shows the average delivery
rate with various RSUs counts. Similarly, we can see that
the average delivery rate of VeSoNet is higher than other
baselines in a few RSUs settings due to VeSoNet’s distributed
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caching scheme. That is, most popular contents are stored
in the providers, distributed over the network and indexed
in meta-data servers. The consumers request and get the
content through V2V without using V2I communications. DB-
IP has the worst performance among the baselines, as it
depends mainly on RSU to broadcast the content in A-Roads
and C-Roads. Moreover, deploying many RSUs is very
expensive [32].

However, the effectiveness of VeSoNet in delivery delays
and rates comes with the cost of longer travel time and compu-
tational overhead, as shown in Fig. 6 and Fig. 7. In Fig. 6 (a),
we increase the velocity of the vehicles and measure the travel
time. We can see that all systems have longer travel times in
low-velocity settings (less than 30 m/s), but it exponentially
decreases as we increase the speed from 5 to 20. It stabilizes
after 30 due to the stopping times at the intersections. Like
in the previous experiments, VeSoNet, SNS, and Cuckoo
present the same behaviours. They have longer travel times
because the rerouted paths are usually longer than the shortest
travel paths. For instance, VeSoNet’s consumers choose routes
having more relevant content providers as long as the chosen
paths do not exceed the social threshold. In Fig. 6 (b), we vary
the density of the vehicles to measure the impact on the
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travel time. Similarly, we observe that the same three systems
still have longer travel times in all traffic density scenarios.
However, the vehicle rerouting baselines have shorter travel
times when the number of accidents increases due to the
rerouting strategy that allows VeSoNet to avoid the accident
roads (see Fig. 6 (¢)).

Fig. 7 shows the baselines’ average computational costs
against content request count, density, and accident count
settings. In Fig. 7 (a), we increase the average content requests
and calculate the computational cost. VeSoNet has a relatively
high computational cost compared to other systems. In fact,
VeSoNet requires the cooperation of multiple vehicular servers
to execute the requests. Thus, the updates and coordination
of these vehicular servers are expensive. Moreover, unlike
other baselines, where the computations are performed on
a centralized server, VeSoNet distributes the computations
among several servers, and the computational cost in each
server is considerably low. In Fig. 7 (b), we evaluate the impact
of the density on the computational cost. The computational
cost exponentially increases with the increase of traffic density.
VeSoNet has the second-highest computational cost, but this
can be much lower as the computations are distributed among
various servers. Finally, Fig. 7 (c), we study the impact
of the accident count on computational cost. As the traffic
accidents count increases, the baselines’ computational costs
increase. Furthermore, other systems have relatively higher
computational costs due to the computational overheads of
re-computing alternative travel routes. Fig.8 shows the con-
vergence of DRL in terms of average reward (reward/episode
length) when varying the episodes count, the episodes are
sampled every 100 episodes. As we can observe, the average
award exponentially increases in the early episodes, then
stabilizes afterwards.

VI. CONCLUSION

In this paper, we presented a traffic-aware vehicular con-
tent caching architecture that optimizes content dissemination
among vehicles using a social-aware graph pruning technique.
This technique computes and assigns the shortest paths with
the most relevant providers to the corresponding consumers.
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To recommend relevant content according to their social
context, we proposed a traffic-aware content recommenda-
tion approach based on graph embeddings. We described
an efficient formal model, where vehicles are represented
by a set of low dimensional vectors (vehicle2vec) of their
previously consumed content. Experimental results show that
the proposed architecture reduces content delivery delay and
delivery ratio by more than 20% compared to the state-of-
the-art baselines, at a slightly higher computational cost and
average travel time. However, there are aspects for future
improvements:

o Although all the communications between content con-

[1]

[2]

[3]

[5]

[7]

[8]

[9]

sumers and content providers are encrypted, however, it is
still possible to perform statistical attacks to infer the
content consumers future paths, the privacy of the content
consumers can be preserved by adding a pseudonyms
identification scheme.

The vehicular edge computing architecture can be further
extended by adding computational task offloading, where
all the computational tasks are performed in the vehicles.
The social path selection process could be further
extended to include driver preferences for individual road
selection.

We have used CNN as a training model for DRL.
VeSoNet can be further developed by optimizing the
training model.
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