72 research outputs found

    Ab initio study of the elastic behavior of MgSiO3 ilmenite at high pressure

    Get PDF
    We investigate the athermal high pressure behavior of the elastic properties of MgSiO3 ilmenite up to 30 GPa using the ab initio pseudopotential method. Our results at zero pressure are in good agreement with single-crystal elasticity measurements. The elastic anisotropy is shown to decrease slightly under compression and hence to remain substantial (25 to 20% shear wave anisotropy and 16 to 10% longitudinal wave anisotropy) over the pressure regime studied. The directions of fastest and slowest wave propagation are found to change slightly with pressure as determined by the pressure dependence of c(14) and c(25). Comparisons with the elastic behavior of other deep transition zone phases such as ringwoodite and garnet show that ilmenite is likely to be the fastest and most anisotropic mineral in this region. Large contrasts (approximate to 10%) in velocities and densities between ilmenite and garnet are suggested to be significant for the interpretation of lateral structure in the transition zone

    Calculated elastic constants and anisotropy of Mg2SiO4 spinel at high pressure

    Get PDF
    We calculated the elastic properties of Mg2SiO4 spinel, using the plane-wave pseudopotential method. The athermal elastic constants were calculated directly from the stress-strain relations up to 30 GPa, which encompasses the experimentally observed stability field of spinel. The calculated elastic constants are in very good agreement with Brillouin scattering data at zero pressure. We calculated the isotropically averaged elastic wave velocities and the anisotropy from our single crystal elastic constants. We find that the elastic anisotropy is weak (azimuthal and polarization anisotropy of S-waves: 5%, azimuthal P-wave anisotropy: 2.5%, at zero pressure) compared to other silicates and oxides. The anisotropy decreases initially with increasing pressure, changing sign at 17GPa before increasing in magnitude at higher pressures. At typical pressures of the earth's transition zone (20-25 GPa), the elastic anisotropy is 1% and 2% for P- and S-waves respectively

    High-pressure elastic properties of major materials of Earth's mantle from first principles

    Get PDF
    The elasticity of materials is important for our understanding of processes ranging from brittle failure, to flexure, to the propagation of elastic waves. Seismologically revealed structure of the Earth's mantle, including the radial (one-dimensional) profile, lateral heterogeneity, and anisotropy are determined largely by the elasticity of the materials that make up this region. Despite its importance to geophysics, our knowledge of the elasticity of potentially relevant mineral phases at conditions typical of the Earth's mantle is still limited: Measuring the elastic constants at elevated pressure-temperature conditions in the laboratory remains a major challenge. Over the past several years, another approach has been developed based on first-principles quantum mechanical theory. First-principles calculations provide the ideal complement to the laboratory approach because they require no input from experiment; that is, there are no free parameters in the theory. Such calculations have true predictive power and can supply critical information including that which is difficult to measure experimentally. A review of high-pressure theoretical studies of major mantle phases shows a wide diversity of elastic behavior among important tetrahedrally and octahedrally coordinated Mg and Ca silicates and Mg, Ca, Al, and Si oxides. This is particularly apparent in the acoustic anisotropy, which is essential for understanding the relationship between seismically observed anisotropy and mantle flow. The acoustic anisotropy of the phases studied varies from zero to more than 50% and is found to depend on pressure strongly, and in some cases nonmonotonically. For example, the anisotropy in MgO decreases with pressure up to 15 GPa before increasing upon further compression, reaching 50% at a pressure of 130 GPa. Compression also has a strong effect on the elasticity through pressure-induced phase transitions in several systems. For example, the transition from stishovite to CaCl2 structure in silica is accompanied by a discontinuous change in the shear (S) wave velocity that is so large (60%) that it may be observable seismologically. Unifying patterns emerge as well: Eulerian finite strain theory is found to provide a good description of the pressure dependence of the elastic constants for most phases. This is in contrast to an evaluation of Birch's law, which shows that this systematic accounts only roughly for the effect of pressure, composition, and structure on the longitudinal (P) wave velocity. The growing body of theoretical work now allows a detailed comparison with seismological observations. The athermal elastic wave velocities of most important mantle phases are found to be higher than the seismic wave velocities of the mantle by amounts that are consistent with the anticipated effects of temperature and iron content on the P and S wave velocities of the phases studied. An examination of future directions focuses on strategies for extending first-principles studies to more challenging but geophysically relevant situations such as solid solutions, high-temperature conditions, and mineral composites

    cij: A Python code for quasiharmonic thermoelasticity

    Get PDF
    The Wu-Wentzcovitch semi-analytical method (SAM) is a concise and predictive formalism to calculate the high-pressure and high-temperature (high-PT) thermoelastic tensor (Cij) of crystalline materials. This method has been successfully applied to materials across different crystal systems in conjunction with ab initio calculations of static elastic coefficients and phonon frequencies. Such results have offered first-hand insights into the composition and structure of the Earth's mantle. Here we introduce the cij package, a Python implementation of the SAM-Cij formalism. It enables a thermoelasticity calculation to be initiated from a single command and fully configurable from a calculation settings file to work with solids within any crystalline system. These features allow SAM-Cij calculations to work on a personal computer and to be easily integrated as a part of high-throughput workflows. Here we show the performance of this code for three minerals from different crystal systems at their relevant PTs: diopside (monoclinic), akimotoite (trigonal), and bridgmanite (orthorhombic)

    Elastic constants and anisotropy of forsterite at high pressure

    Get PDF
    We have determined from first principles the athermal elastic constant tensor of Mg2SiO4 forsterite with the plane wave pseudopotential method over a wide range of pressure (0-100 GPa) that encompasses the full range over which forsterite has been observed experimentally. The computed elastic constants are in excellent agreement with experimental data up to the maximum pressure of the experiments (16 GPa). We calculate the single-crystal elastic anisotropy from the elastic constants. We find that the anisotropy is strong (azimuthal P- and S-wave anisotropy: 25 % and 20 %, respectively, polarization anisotropy: 15 %), in agreement with experiment, and that it depends weakly on pressure over the range 0-25 GPa, in contrast to the behavior of other silicates and oxides

    Transformation Pathways of Silica under High Pressure

    Full text link
    Concurrent molecular dynamics simulations and ab initio calculations show that densification of silica under pressure follows a ubiquitous two-stage mechanism. First, anions form a close-packed sub-lattice, governed by the strong repulsion between them. Next, cations redistribute onto the interstices. In cristobalite silica, the first stage is manifest by the formation of a metastable phase, which was observed experimentally a decade ago, but never indexed due to ambiguous diffraction patterns. Our simulations conclusively reveal its structure and its role in the densification of silica.Comment: 14 pages, 4 figure

    Identification of post-pyrite phase transitions in SiO2 by a genetic algorithm

    Get PDF
    US Department of Energy, Basic Energy Sciences, Division of Materials Science and Engineering [DE-AC02-07CH11358]; NSF [EAR-0757903, EAR-0810272, EAR-1047629, ATM-0426757]Using a first-principles genetic algorithm we predict an Fe2P phase is the first post-pyrite phase of SiO2 at low temperatures. This contrasts with a recently predicted cotunnite phase. Static enthalpy differences between these two phases are small near the transition pressure (0.69 TPa). While quasiharmonic free energy calculations predict an Fe2P--> cotunnite-type transition with increasing temperature, another phase, NbCoB type, is identified as being structurally and energetically intermediate between Fe2P and cotunnite phases. This structure suggests a possible temperature-induced gradual transformation between Fe2P and cotunnite phases. This finding would change our understanding of how planet-forming silicates, for example, MgSiO3 post-perovskite and its solid solutions, dissociate into elementary oxides at thermodynamic conditions expected in the interior of solar giants and exoplanets

    Metal-insulator transition in vanadium dioxide nanobeams: probing sub-domain properties of strongly correlated materials

    Full text link
    Many strongly correlated electronic materials, including high-temperature superconductors, colossal magnetoresistance and metal-insulator-transition (MIT) materials, are inhomogeneous on a microscopic scale as a result of domain structure or compositional variations. An important potential advantage of nanoscale samples is that they exhibit the homogeneous properties, which can differ greatly from those of the bulk. We demonstrate this principle using vanadium dioxide, which has domain structure associated with its dramatic MIT at 68 degrees C. Our studies of single-domain vanadium dioxide nanobeams reveal new aspects of this famous MIT, including supercooling of the metallic phase by 50 degrees C; an activation energy in the insulating phase consistent with the optical gap; and a connection between the transition and the equilibrium carrier density in the insulating phase. Our devices also provide a nanomechanical method of determining the transition temperature, enable measurements on individual metal-insulator interphase walls, and allow general investigations of a phase transition in quasi-one-dimensional geometry.Comment: 9 pages, 3 figures, original submitted in June 200

    Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal VO2 beams

    Full text link
    Spatial phase inhomogeneity at the nano- to microscale is widely observed in strongly-correlated electron materials. The underlying mechanism and possibility of artificially controlling the phase inhomogeneity are still open questions of critical importance for both the phase transition physics and device applications. Lattice strain has been shown to cause the coexistence of metallic and insulating phases in the Mott insulator VO2. By continuously tuning strain over a wide range in single-crystal VO2 micro- and nanobeams, here we demonstrate the nucleation and manipulation of one-dimensionally ordered metal-insulator domain arrays along the beams. Mott transition is achieved in these beams at room temperature by active control of strain. The ability to engineer phase inhomogeneity with strain lends insight into correlated electron materials in general, and opens opportunities for designing and controlling the phase inhomogeneity of correlated electron materials for micro- and nanoscale device applications.Comment: 14 pages, 4 figures, with supplementary informatio

    Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D" layer

    Full text link
    The Earth's lower mantle is believed to be composed mainly of (Mg,Fe)SiO3 perovskite, with lesser amounts of (Mg,Fe)O and CaSiO3). But it has not been possible to explain many unusual properties of the lowermost 150 km of the mantle (the D" layer) with this mineralogy. Here, using ab initio simulations and high-pressure experiments, we show that at pressures and temperatures of the D" layer, MgSiO3 transforms from perovskite into a layered CaIrO3-type post-perovskite phase. The elastic properties of the post-perovskite phase and its stability field explain several observed puzzling properties of the D" layer: its seismic anisotropy, the strongly undulating shear-wave discontinuity at its top and possibly the anticorrelation between shear and bulk sound velocities.Comment: PUBLISHED IN Nature 430, 445-448 (2004
    • 

    corecore