119 research outputs found

    Analytical studies of new airfoils for wind turbines

    Get PDF
    Computer studies were conducted to analyze the potential gains associated with utilizing new airfoils for large wind turbine rotor blades. Attempts to include 3-dimensional stalling effects were inconclusive. It is recommended that blade pressure measurements be made to clarify the nature of blade stalling. It is also recommended that new laminar flow airfoils be used as rotor blade sections

    Performance and aerodynamic braking of a horizontal-axis wind turbine from small-scale wind tunnel tests

    Get PDF
    Wind tunnel tests of three 20" diameter, zero twist, zero pitch wind turbine rotor models were conducted in a 7' x 10' wind tunnel to determine the performance of such rotors with NACA 23024 and NACA 64 sub 3-621 airfoil sections. Aerodynamic braking characteristics of a 38% span, 30% chord, vented aileron configuration were measured on the NACA 23024 rotor. Surface flow patterns were observed using fluorescent mini-tufts attached to the suction side of the rotor blades. Experimental results with and without ailerons are compared to predictions using airfoil section data and a momentum performance code. Results of the performance studies show that the 64 sub 3-621 rotor produces higher peak power than the 23024 rotor for a given rotor speed. Analytical studies, however, indicate that the 23024 should produce higher power. Transition strip experiments show that the 23024 rotor is much more sensitive to roughness than the 64 sub 3-621 rotor. These trends agree with analytical predictions. Results of the aileron test show that this aileron, when deflected, produces a braking torque at all tip speed ratios. In free wheeling coastdowns the rotor blade stopped, then rotated backward at a tip speed ratio of -0.6

    Reflection-plane tests of spoilers on an advanced technology wing with a large Fowler flap

    Get PDF
    Wind tunnel experiments were conducted to determine the effectiveness of spoilers applied to a finite-span wing which utilizes the GA(W)-1 airfoil section and a 30% chord full-span Fowler flap. A series of spoiler cross sectioned shapes were tested utilizing a reflection-plane model. Five-component force characteristics and hinge moment measurements were obtained. Results confirm earlier two-dimensional tests which showed that spoilers could provide large lift increments at any flap setting, and that spoiler control reversal tendencies could be eliminated by providing a vent path from lower surface to upper surface. Performance penalties due to spoiler leakage airflow were measured

    Wing-tip vanes as vortex attenuation and induced drag reduction devices

    Get PDF
    Analytical studies have been conducted to examine the feasibility of utilizing wing tip turbines to remove swirl from the wing trailing vortex, and hence reduce the potential for upset of following aircraft. Energy recovery from the turbines is also analyzed. A computer routine has been developed to permit rapid parametric studies of various tip turbine designs. It is shown that the optimum turbine is a non-rotating set of vanes which reduce swirl and recover energy in the form of reduced overall configuration induced drag. A specific case study indicates a 23% reduction in induced drag for a rectangular wing of aspect ratio 5.33, operated at a lift coefficient at 1.0

    Wind tunnel force and pressure tests

    Get PDF
    Force and surface pressure distributions were measured for a 13% medium speed (NASA MS(1)-0313) airfoil fitted with 20% aileron, 25% slotted flap and 10% slot lip spoiler. All tests were conducted in the Walter Beech Memorial Wind Tunnel at a Reynolds number of 2.2 million and a Mach number of 0.13. Results include lift, drag, pitching moments, control surface normal force and hinge moments, and surface pressure distributions. The basic airfoil exhibits low speed characteristics similar to the GA(W)-2 airfoil. Incremental aileron and spoiler performance are quite comparable to that obtained on the GA(W)-2 airfoil. Slotted flap performance on this section is reduced compared to the GA(W)-2, resulting in a highest c sub l max of 3.00 compared to 3.35 for the GA(W)-2

    Effects of Leading-Edge Camber on Low-Speed Characteristics of Slender Delta Wings: Techniques and Tabulated Data

    Get PDF
    Special tests to determine the importance of transition fixing and Reynolds number variation on forces produced by thin delta wings are discussed. Transition fixing was achieved by applying cement to models and sprinkling grit on wet adhesive. Strips were applied along lines emanating from the apex located along sixty-five percent semi-span rays. Tests were made with grit on both surfaces, upper surface only, lower surface only, and on clean surfaces. Reynolds number varied by testing at three dynamic pressures. Correspondence between dynamic pressure and Reynolds number based on the mean aerodynamic chord are shown. No significant changes are noted due to either Reynolds number variation or transition fixing, within the range of Reynolds numbers used for the test

    Feasibility study of aileron and spoiler control systems for large horizontal axis wind turbines

    Get PDF
    The feasibility of using aileron or spoiler controls as alternates to pitch control for large horizontal axis wind turbines was studied. The NASA Mod-0 100 kw machine was used as the basis for the study. Specific performance studies were conducted for 20% chord ailerons over the outboard 30% span, and for 10% chord spoilers over the same portion of the span. Both control systems utilized control deflections up to 60 deg. Results of the study show that either ailerons or spoilers can provide the control necessary to limit turbine power in high wind conditions. The aileron system, as designed, provides overspeed protection at hurricane wind speeds, low wind speed starting torque of 778 N-m (574 ft. lb) at 3.6 m/sec, and a 1.3 to 1.5% increase in annual energy compared to a fixed pitch rotor. The aileron control system preliminary design study includes aileron loads analysis and the design of a failsafe flyweight actuator for overspeed protection in the event of a hydraulic system failure

    Additional flow field studies of the GA(W)-1 airfoil with 30-percent chord Fowler flap including slot-gap variations and cove shape modifications

    Get PDF
    Experimental measurements were made to determine the effects of slot gap opening and flap cove shape on flap and airfoil flow fields. Test model was the GA(W)-1 airfoil with 0.30c Fowler flap deflected 35 degrees. Tests were conducted with optimum, wide and narrow gaps, and with three cove shapes. Three test angles were selected, corresponding to pre-stall and post-stall conditions. Reynolds number was 2,200,000 and Mach number was 0.13. Force, surface pressure, total pressure, and split-film turbulence measurements were made. Results were compared with theory for those parameters for which theoretical values were available

    A low speed two-dimensional study of flow separation on the GA(W)-1 airfoil with 30-percent chord Fowler flap

    Get PDF
    Measurements of flow fields with low speed turbulent boundary layers were made for the GA(W)-1 airfoil with a 0.30 c Fowler flap deflected 40 deg at angles of attack of 2.7 deg, 7.7 deg, and 12.8 deg, at a Reynolds number of 2.2 million, and a Mach number of 0.13. Details of velocity and pressure fields associated with the airfoil flap combination are presented for cases of narrow, optimum and wide slot gaps. Extensive flow field turbulence surveys were also conducted employing hot-film anemometry. For the optimum gap setting, the boundaries of the regions of flow reversal within the wake were determined by this technique for two angles of attack. Local skin friction distributions for the basic airfoil and the airfoil with flap (optimum gap) were obtained using the razor blade technique

    Experimental studies of flow separation and stalling on a two-dimensional airfoil at low speeds

    Get PDF
    Detailed measurements of flow fields associated with low-speed turbulent boundary layers were made for the 17% thick GA(W)-1 airfoil section at nominal angles of attack of 10 deg, 14 deg, and 18 deg, Reynolds number 2.2 x 10, and Mach number 0.13. The data include pressure and velocity surveys of the pre- and post-separated regions on the airfoil and the associated wake. The boundary layer characteristics including regions of separation on the airfoil are also presented
    corecore