194 research outputs found

    A forward view on reliable computers for flight control

    Get PDF
    The requirements for fault-tolerant computers for flight control of commercial aircraft are examined; it is concluded that the reliability requirements far exceed those typically quoted for space missions. Examination of circuit technology and alternative computer architectures indicates that the desired reliability can be achieved with several different computer structures, though there are obvious advantages to those that are more economic, more reliable, and, very importantly, more certifiable as to fault tolerance. Progress in this field is expected to bring about better computer systems that are more rigorously designed and analyzed even though computational requirements are expected to increase significantly

    Design of a fault tolerant airborne digital computer. Volume 1: Architecture

    Get PDF
    This volume is concerned with the architecture of a fault tolerant digital computer for an advanced commercial aircraft. All of the computations of the aircraft, including those presently carried out by analogue techniques, are to be carried out in this digital computer. Among the important qualities of the computer are the following: (1) The capacity is to be matched to the aircraft environment. (2) The reliability is to be selectively matched to the criticality and deadline requirements of each of the computations. (3) The system is to be readily expandable. contractible, and (4) The design is to appropriate to post 1975 technology. Three candidate architectures are discussed and assessed in terms of the above qualities. Of the three candidates, a newly conceived architecture, Software Implemented Fault Tolerance (SIFT), provides the best match to the above qualities. In addition SIFT is particularly simple and believable. The other candidates, Bus Checker System (BUCS), also newly conceived in this project, and the Hopkins multiprocessor are potentially more efficient than SIFT in the use of redundancy, but otherwise are not as attractive

    Design study of Software-Implemented Fault-Tolerance (SIFT) computer

    Get PDF
    Software-implemented fault tolerant (SIFT) computer design for commercial aviation is reported. A SIFT design concept is addressed. Alternate strategies for physical implementation are considered. Hardware and software design correctness is addressed. System modeling and effectiveness evaluation are considered from a fault-tolerant point of view

    String Tension from Monopoles in SU(2) Lattice Gauge Theory

    Full text link
    The axis for Figure 2 was wrong. It has been fixed and the postscript file replaced (The file was called comp.ps).Comment: (22 pages latex (revtex); 2 figures appended as postscript files - search for mono.ps and comp.ps. Figures mailed on request--send a note to [email protected]) Preprint ILL-(TH)-94-#1

    Confinement and the photon propagator in 3D compact QED: a lattice study in Landau gauge at zero and finite temperature

    Get PDF
    On the lattice we study the gauge boson propagator of three dimensional compact QED in Landau gauge at zero and non-zero temperature. The non-perturbative effects are taken into account by the generation of a mass, by an anomalous dimension and by the photon wave function renormalization. All these effects can be attributed to the monopoles: they are absent in the propagator of the singularity-free part of the gauge field. We assess carefully the Gribov copy problem for the propagator and the parameters emerging from the fits.Comment: 25 pages, 32 figures, RevTeX 4; version in print in Phys. Rev. D; typos and figures 5c and 7c correcte

    London relation and fluxoid quantization for monopole currents in U(1) lattice gauge theory

    Full text link
    We explore the analogy between quark confinement and the Meissner effect in superconductors. We measure the response of color-magnetic "supercurrents" from Dirac magnetic monopoles to the presence of a static quark-antiquark pair in four dimensional U(1) lattice gauge theory. Our results indicate that in the confined phase these currents screen the color-electric flux due to the quarks in an electric analogy of the Meisner effect. We show that U(1) lattice guage theory obeys both a dual London equation and an electric fluxoid quantization condition.Comment: LSUHEP-1-92 May 1992, 13 page

    The photon propagator in compact QED_{2+1}: the effect of wrapping Dirac strings

    Full text link
    We discuss the influence of closed Dirac strings on the photon propagator in the Landau gauge emerging from a study of the compact U(1) gauge model in 2+1 dimensions. This gauge also minimizes the total length of the Dirac strings. Closed Dirac strings are stable against local gauge-fixing algorithms only due to the torus boundary conditions of the lattice. We demonstrate that these left-over Dirac strings are responsible for the previously observed unphysical behavior of the propagator of space-like photons (D_T) in the deconfinement (high temperature) phase. We show how one can monitor the number N_3 of thermal Dirac strings which allows to separate the propagator measurements into N_3 sectors. The propagator in N_3 \neq 0 sectors is characterized by a non--zero mass and an anomalous dimension similarly to the confinement phase. Both mass squared and anomalous dimension are found to be proportional to N_3. Consequently, in the N_3=0 sector the unphysical behavior of the D_T photon propagator is cured and the deviation from the free massless propagator disappears.Comment: 13 pages, 13 figures, 1 tabl

    Flux-tubes in three-dimensional lattice gauge theories

    Full text link
    Flux-tubes in different representations of SU(2) and U(1) lattice gauge theories in three dimensions are measured. Wilson loops generate heavy ``quark-antiquark'' pairs in fundamental (j=1/2j=1/2), adjoint (j=1j=1), and quartet (j=3/2j=3/2) representations of SU(2). The first direct lattice measurements of the flux-tube cross-section Aj{\cal A}_j as a function of representation are made. It is found that Ajconstant{\cal A}_j \approx {\rm constant}, to about 10\%. Results are consistent with a connection between the string tension σj\sigma_j and Aj{\cal A}_j suggested by a simplified flux-tube model, σj=g2j(j+1)/(2Aj)\sigma_j = g^2 j(j+1) / (2 {\cal A}_j) [gg is the gauge coupling], given that σj\sigma_j scales like the Casimir j(j+1)j(j+1), as observed in previous lattice studies in both three and four dimensions. The results can discriminate among phenomenological models of the physics underlying confinement. Flux-tubes for singly- and doubly-charged Wilson loops in compact QED3_3 are also measured. It is found that the string tension scales as the squared-charge and the flux-tube cross-section is independent of charge to good approximation. These SU(2) and U(1) simulations lend some support, albeit indirectly, to a conjecture that the dual superconductor mechanism underlies confinement in compact gauge theories in both three and four dimensions.Comment: 15 pages (REVTEX 2.1). Figures: 11, not included (available by request from [email protected] by regular mail, postscript files, or one self-unpacking uuencoded file

    A microscopic semiclassical confining field equation for U(1)U(1) lattice gauge theory in 2+1 dimensions

    Get PDF
    We present a semiclassical nonlinear field equation for the confining field in 2+1--dimensional U(1)U(1) lattice gauge theory (compact QED). The equation is derived directly from the underlying microscopic quantum Hamiltonian by means of truncation. Its nonlinearities express the dynamic creation of magnetic monopole currents leading to the confinement of the electric field between two static electric charges. We solve the equation numerically and show that it can be interpreted as a London relation in a dual superconductor.Comment: 21 pages, epsf postscript figures included, full postscript available at ftp://ftp.th.physik.uni-frankfurt.de/pub/cbest/micro.ps.Z or http://www.th.physik.uni-frankfurt.de/~cbest/pub.htm
    corecore