8 research outputs found

    Strongly Active Responses of <i>Pinus tabuliformis</i> Carr. and <i>Sophora viciifolia</i> Hance to CO<sub>2</sub> Enrichment and Drought Revealed by Tree-Ring Isotopes on the Central China Loess Plateau

    No full text
    Understanding the water-use strategy of human-planted species used in response to climate change is essential to optimize afforestation programs in dry regions. Since 2000, trees on the central Loess Plateau have experienced a shift from strengthening drought to weakening drought. In this study, we combined tree-ring δ13C and δ18O records from Pinus tabuliformis (syn. tabulaeformis) Carr. (a tree) and Sophora viciifolia Hance (a shrub) on the central Loess Plateau to investigate species-specific responses to rising atmospheric CO2 (Ca) and drought. We found summer relative humidity controlled the fractionation of tree-ring δ18O, but the magnitude of the climate influence on δ13C differed between the species. The intrinsic water-use efficiency (iWUE) trends of both species suggested a strongly active response to maintain constant intercellular CO2 concentrations as Ca rose. The tree-ring δ13C and δ18O of both species using first-difference data were significantly and positively correlated, with stronger relationships for the shrub. This indicated the dominant regulation of iWUE by stomatal conductance in both species, but with greater stomatal control for the shrub. Moreover, the higher mean iWUE value of S. viciifolia indicated a more conservative water-use strategy than P. tabuliformis. Based on our commonality analysis, the main driver of the increased iWUE was the joint effect of Ca and vapor-pressure deficit (25.51%) for the tree, while it was the joint effect of Ca and the self-calibrated Palmer drought severity index (39.13%) for the shrub. These results suggest S. viciifolia will be more drought-tolerant than P. tabuliformis and as Ca continually rises, we should focus more on the effects of soil drought than atmospheric drought on the water-use strategy of S. viciifolia

    Specific Drivers and Responses to Land Surface Phenology of Different Vegetation Types in the Qinling Mountains, Central China

    No full text
    Land surface phenology (LSP), as a precise bio-indicator that responds to climate change, has received much attention in fields concerned with climate change and ecology. Yet, the dynamics of LSP changes in the Qinling Mountains (QMs)—A transition zone between warm-temperate and north subtropical climates with complex vegetation structure—under significant climatic environmental evolution are unclear. Here, we analyzed the spatiotemporal dynamics of LSP for different vegetation types in the QMs from 2001 to 2019 and quantified the degree of influence of meteorological factors (temperature, precipitation, and shortwave radiation), and soil (temperature and moisture), and biological factors (maximum of NDVI and middle date during the growing season) on LSP changes using random forest models. The results show that there is an advanced trend (0.15 days/year) for the start of the growing season (SOS), a delayed trend (0.24 days/year) for the end of the growing season (EOS), and an overall extended trend (0.39 days/year) for the length of the growing season (LOS) in the QMs over the past two decades. Advanced SOS and delayed EOS were the dominant patterns leading to a lengthened vegetation growing season, followed by a joint delay of SOS and EOS, and the latter was particularly common in shrub and evergreen broadleaved forests. The growth season length increased significantly in western QMs. Furthermore, we confirmed that meteorological factors are the main factors affecting the interannual variations in SOS and EOS, especially the meteorological factor of preseason mean shortwave radiation (SWP). The grass and crop are most influenced by SWP. The soil condition has, overall, a minor influence the regional LSP. This study highlighted the specificity of different vegetation growth in the QMs under warming, which should be considered in the accurate prediction of vegetation growth in the future

    Superconducting properties of molybdenum ruthenium alloy Mo

    No full text
    Resistance, magnetization and specific heat measurements were performed on Mo0.63Ru0.37 alloy. All of them confirm that Mo0.63Ru0.37 becomes superconducting at about 7.0 K with bulk nature. Its upper critical field behavior fits to Werthamer-Helfand-Hohenberg (WHH) model quite well, with an upper critical field of μ0Hc2(0) = 8.64 T, less than its Pauli limit. Its electronic specific heat is reproduced by Bardeen-Cooper-Schriffer (BCS)-based α-model with a gap ratio Δ0 = 1.88kBTc, which is a little larger than the standard BCS value of 1.76. We concluded that Mo0.63Ru0.37 is a fully gapped isotropic s-wave superconductor, with its features are mostly consistent with the conventional theory

    Electrical manipulation of skyrmions in a chiral magnet

    No full text
    There has been much interest in using skyrmions for new approaches to compution, however, creating, deleting and driving skyrmions remains a challenge. Here, Wang et al demonstrate all three operations for skyrmions in tailored Co8Zn10Mn2 nanodevices using tailored current pulses. Writing, erasing and computing are three fundamental operations required by any working electronic device. Magnetic skyrmions could be essential bits in promising in emerging topological spintronic devices. In particular, skyrmions in chiral magnets have outstanding properties like compact texture, uniform size, and high mobility. However, creating, deleting, and driving isolated skyrmions, as prototypes of aforementioned basic operations, have been a grand challenge in chiral magnets ever since the discovery of skyrmions, and achieving all these three operations in a single device is even more challenging. Here, by engineering chiral magnet Co8Zn10Mn2 into the customized micro-devices for in-situ Lorentz transmission electron microscopy observations, we implement these three operations of skyrmions using nanosecond current pulses with a low current density of about 10(10) A center dot m(-)(2) at room temperature. A notched structure can create or delete magnetic skyrmions depending on the direction and magnitude of current pulses. We further show that the magnetic skyrmions can be deterministically shifted step-by-step by current pulses, allowing the establishment of the universal current-velocity relationship. These experimental results have immediate significance towards the skyrmion-based memory or logic devices

    Learning How to Open the Door: A Reassessment of China's “Opening” Strategy

    No full text
    corecore