22 research outputs found

    The Collapse of the Spin-Singlet Phase in Quantum Dots

    Full text link
    We present experimental and theoretical results on a new regime in quantum dots in which the filling factor 2 singlet state is replaced by new spin polarized phases. We make use of spin blockade spectroscopy to identify the transition to this new regime as a function of the number of electrons. The key experimental observation is a reversal of the phase in the systematic oscillation of the amplitude of Coulomb blockade peaks as the number of electrons is increased above a critical number. It is found theoretically that correlations are crucial to the existence of the new phases.Comment: REVTeX4, 4 pages, 4 figures, to appear in PR

    Exchange-correlation energy densities for two-dimensional systems from quantum dot ground-states

    Full text link
    In this paper we present a new approach how to extract polarization-dependent exchange-correlation energy densities for two-dimensional systems from reference densities and energies of quantum dots provided by exact diagonalization. Compared with results from literature we find systematic corrections for all polarizations in the regime of high densities.Comment: 7 figures. submitted to Phys. Rev.

    Exchange-correlation vector potentials and vorticity-dependent exchange-correlation energy densities in two-dimensional systems

    Full text link
    We present a new approach how to calculate the scalar exchange-correlation potentials and the vector exchange-correlation potentials from current-carrying ground states of two-dimensional quantum dots. From these exchange-correlation potentials we derive exchange-correlation energy densities and examine their vorticity (or current) dependence. Compared with parameterizations of current-induced effects in literature we find an increased significance of corrections due to paramagnetic current densities.Comment: 5 figures, submitted to PR

    Dissociation of vertical semiconductor diatomic artificial molecules

    Get PDF
    We investigate the dissociation of few-electron circular vertical semiconductor double quantum dot artificial molecules at 0 T as a function of interdot distance. Slight mismatch introduced in the fabrication of the artificial molecules from nominally identical constituent quantum wells induces localization by offsetting the energy levels in the quantum dots by up to 2 meV, and this plays a crucial role in the appearance of the addition energy spectra as a function of coupling strength particularly in the weak coupling limit.Comment: Accepted for publication in Phys. Rev. Let

    Electron-hole bilayer quantum dots: Phase diagram and exciton localization

    Full text link
    We studied a vertical ``quantum dot molecule'', where one of the dots is occupied with electrons and the other with holes. We find that different phases occur in the ground state, depending on the carrier density and the interdot distance. When the system is dominated by shell structure, orbital degeneracies can be removed either by Hund's rule, or by Jahn-Teller deformation. Both mechanisms can lead to a maximum of the addition energy at mid-shell. At low densities and large interdot distances, bound electron-hole pairs are formed.Comment: 10 pages, 3 figure

    A vertical diatomic artificial molecule in the intermediate coupling regime in a parallel and perpendicular magnetic field

    Get PDF
    We present experimental results for the ground state electrochemical potentials of a few electron semiconductor artificial molecule made by vertically coupling two quantum dots, in the intermediate coupling regime, in perpendicular and parallel magnetic fields up to 5 T. We perform a quantitative analysis based on local-spin density functional theory. The agreement between theoretical and experimental results is good, and the phase transitions are well reproduced.Comment: Typeset using Revtex, 13 pages and 8 Postscript figure

    Quantum-dot lithium in zero magnetic field: Electronic properties, thermodynamics, and a liquid-solid transition in the ground state

    Full text link
    Energy spectra, electron densities, pair correlation functions and heat capacity of a quantum-dot lithium in zero external magnetic field (a system of three interacting two-dimensional electrons in a parabolic confinement potential) are studied using the exact diagonalization approach. A particular attention is given to a Fermi-liquid -- Wigner-solid transition in the ground state of the dot, induced by the intra-dot Coulomb interaction.Comment: 12 pages, incl. 16 figure
    corecore