163 research outputs found

    Identification and characterization of the expression profile of microRNAs in Anopheles anthropophagus

    Get PDF
    BACKGROUND: Anopheles anthropophagus, one of the most important mosquito-borne disease vectors in Asia, mainly takes blood meals from humans and transmits both malaria and filariae. MicroRNAs (miRNAs) are small non-coding RNAs, and play a critical role in many cellular processes, including development, differentiation, apoptosis and innate immunity. METHODS: We investigated the global miRNA expression profile of male and female adults of A. anthropophagus using illumina Hiseq2000 sequencing combined with Northern blot. RESULTS: By using the miRNAs of the closely-related species Anopheles gambiae and Aedes aegypti as reference, we obtained 102 miRNAs candidates out of 12.43 million raw sequencing reads for male and 16.51 million reads for female, with 81 of them found as known miRNAs in An. gambiae and/or Ae. aegypti, and the remaining 21 miRNAs were considered as novel. By analyzing the revised read count of miRNAs in male and female, 29 known miRNAs show sexual difference expression: >2-fold in the read count of the same miRNAs in male and female. Especially for miR-989, which is highly expressed in the female mosquitoes, but shows almost no detected expression in male mosquitoes, indicating that miR-989 may be involved in the physiological activity of female mosquito adults. The expression of four miRNAs in different growth stages of mosquito were further identified by Northern blot. Several miRNAs show the stage-specific expression, of which miR-2943 only expressed in the egg stage, suggesting that miR-2943 may be associated with the development of mosquito eggs. CONCLUSIONS: The present study represents the first global characterization of An. anthropophagus miRNAs in sexual differences and stage-specific functions. A better understanding of the functions of these miRNAs will offer new insights in mosquito biology and has implications for the effective control of mosquito-borne infectious diseases

    A Novel Detection Scheme with Multiple Observations for Sparse Signal Based on Likelihood Ratio Test with Sparse Estimation

    Get PDF
    Recently, the problem of detecting unknown and arbitrary sparse signals has attracted much attention from researchers in various fields. However, there remains a peck of difficulties and challenges as the key information is only contained in a small fraction of the signal and due to the absence of prior information. In this paper, we consider a more general and practical scenario of multiple observations with no prior information except for the sparsity of the signal. A new detection scheme referred to as the likelihood ratio test with sparse estimation (LRT-SE) is presented. Under the Neyman-Pearson testing framework, LRT-SE estimates the unknown signal by employing the l1-minimization technique from compressive sensing theory. The detection performance of LRT-SE is preliminarily analyzed in terms of error probabilities in finite size and Chernoff consistency in high dimensional condition. The error exponent is introduced to describe the decay rate of the error probability as observations number grows. Finally, these properties of LRT-SE are demonstrated based on the experimental results of synthetic sparse signals and sparse signals from real satellite telemetry data. It could be concluded that the proposed detection scheme performs very close to the optimal detector

    Capacity of Freeway Merge Areas with Different On-Ramp Traffic Flow

    Get PDF
    This paper is aimed at investigating the influence of different types of traffic flows on the capacity of freeway merge areas. Based on the classical gap-acceptance model, two calculating models were established specifically considering randomly arriving vehicles and individual difference in driving behaviours. Monte-Carlo simulation was implemented to reproduce the maximum traffic volume on the designed freeway merge area under different situations. The results demonstrated that the proposed calculating models have better performance than the conventional gap-acceptance theory on accurately predicting the capacity of freeway merge areas. The findings of research could be helpful to improve the microscopic traffic flow simulation model from a more practical perspective and support the designing of freeway merge areas as well

    Iterative Robust Visual Grounding with Masked Reference based Centerpoint Supervision

    Full text link
    Visual Grounding (VG) aims at localizing target objects from an image based on given expressions and has made significant progress with the development of detection and vision transformer. However, existing VG methods tend to generate false-alarm objects when presented with inaccurate or irrelevant descriptions, which commonly occur in practical applications. Moreover, existing methods fail to capture fine-grained features, accurate localization, and sufficient context comprehension from the whole image and textual descriptions. To address both issues, we propose an Iterative Robust Visual Grounding (IR-VG) framework with Masked Reference based Centerpoint Supervision (MRCS). The framework introduces iterative multi-level vision-language fusion (IMVF) for better alignment. We use MRCS to ahieve more accurate localization with point-wised feature supervision. Then, to improve the robustness of VG, we also present a multi-stage false-alarm sensitive decoder (MFSD) to prevent the generation of false-alarm objects when presented with inaccurate expressions. The proposed framework is evaluated on five regular VG datasets and two newly constructed robust VG datasets. Extensive experiments demonstrate that IR-VG achieves new state-of-the-art (SOTA) results, with improvements of 25\% and 10\% compared to existing SOTA approaches on the two newly proposed robust VG datasets. Moreover, the proposed framework is also verified effective on five regular VG datasets. Codes and models will be publicly at https://github.com/cv516Buaa/IR-VG

    OV-VG: A Benchmark for Open-Vocabulary Visual Grounding

    Full text link
    Open-vocabulary learning has emerged as a cutting-edge research area, particularly in light of the widespread adoption of vision-based foundational models. Its primary objective is to comprehend novel concepts that are not encompassed within a predefined vocabulary. One key facet of this endeavor is Visual Grounding, which entails locating a specific region within an image based on a corresponding language description. While current foundational models excel at various visual language tasks, there's a noticeable absence of models specifically tailored for open-vocabulary visual grounding. This research endeavor introduces novel and challenging OV tasks, namely Open-Vocabulary Visual Grounding and Open-Vocabulary Phrase Localization. The overarching aim is to establish connections between language descriptions and the localization of novel objects. To facilitate this, we have curated a comprehensive annotated benchmark, encompassing 7,272 OV-VG images and 1,000 OV-PL images. In our pursuit of addressing these challenges, we delved into various baseline methodologies rooted in existing open-vocabulary object detection, VG, and phrase localization frameworks. Surprisingly, we discovered that state-of-the-art methods often falter in diverse scenarios. Consequently, we developed a novel framework that integrates two critical components: Text-Image Query Selection and Language-Guided Feature Attention. These modules are designed to bolster the recognition of novel categories and enhance the alignment between visual and linguistic information. Extensive experiments demonstrate the efficacy of our proposed framework, which consistently attains SOTA performance across the OV-VG task. Additionally, ablation studies provide further evidence of the effectiveness of our innovative models. Codes and datasets will be made publicly available at https://github.com/cv516Buaa/OV-VG

    ClickINC: In-network Computing as a Service in Heterogeneous Programmable Data-center Networks

    Full text link
    In-Network Computing (INC) has found many applications for performance boosts or cost reduction. However, given heterogeneous devices, diverse applications, and multi-path network typologies, it is cumbersome and error-prone for application developers to effectively utilize the available network resources and gain predictable benefits without impeding normal network functions. Previous work is oriented to network operators more than application developers. We develop ClickINC to streamline the INC programming and deployment using a unified and automated workflow. ClickINC provides INC developers a modular programming abstractions, without concerning to the states of the devices and the network topology. We describe the ClickINC framework, model, language, workflow, and corresponding algorithms. Experiments on both an emulator and a prototype system demonstrate its feasibility and benefits

    Learn by Oneself: Exploiting Weight-Sharing Potential in Knowledge Distillation Guided Ensemble Network

    Get PDF
    Recent CNNs (convolutional neural networks) have become more and more compact. The elegant structure design highly improves the performance of CNNs. With the development of knowledge distillation technique, the performance of CNNs gets further improved. However, existing knowledge distillation guided methods either rely on offline pretrained high-quality large teacher models or online heavy training burden. To solve the above problems, we propose a feature-sharing and weight-sharing based ensemble network (training framework) guided by knowledge distillation (EKD-FWSNet) to make baseline models stronger in terms of representation ability with less training computation and memory cost involved. Specifically, motivated by getting rid of the dependence of offline pretrained teacher model, we design an end-to-end online training scheme to optimize EKD-FWSNet. Motivated by decreasing the online training burden, we only introduce one auxiliary classmate branch to construct multiple forward branches, which will then be integrated as ensemble teacher to guide baseline model. Compared to previous online ensemble training frameworks, EKD-FWSNet can provide diverse output predictions without relying on increasing auxiliary classmate branches. Motivated by maximizing the optimization power of EKD-FWSNet, we exploit the representation potential of weight-sharing blocks and design efficient knowledge distillation mechanism in EKD-FWSNet. Extensive comparison experiments and visualization analysis on benchmark datasets (CIFAR-10/100, tiny-ImageNet, CUB-200 and ImageNet) show that self-learned EKD-FWSNet can boost the performance of baseline models by large margin, which has obvious superiority compared to previous related methods. Extensive analysis also proves the interpretability of EKD-FWSNet. Our code is available at https://github.com/cv516Buaa/EKD-FWSNet

    Prediction of Metabolic Syndrome for the Survival of Patients With Digestive Tract Cancer: A Meta-Analysis

    Get PDF
    Background and Objectives: Growing evidence indicates that metabolic syndrome confers a differential risk for the development and progression of many types of cancer, especially in the digestive tract system. We here synthesized the results of published cohort studies to test whether baseline metabolic syndrome and its components can predict survival in patients with esophageal, gastric, or colorectal cancer.Methods: Literature retrieval, publication selection and data extraction were performed independently by two authors. Analyses were done using STATA software (version 14.1).Results: A total of 15 publications involving 54,656 patients were meta-analyzed. In overall analyses, the presence of metabolic syndrome was associated with a non-significant 19% increased mortality risk for digestive tract cancer (hazard ratio [HR]: 1.19; 95% confidence interval [CI]: 1.45 to 2.520.95 to 1.49, P = 0.130; I2: 94.8%). In stratified analyses, the association between metabolic syndrome and digestive tract cancer survival was statistically significant in prospective studies (HR: 1.64, 95% CI: 1.18 to 2.28), in studies involving postsurgical patients (HR: 1.42, 95% CI: 1.06 to 1.92), and in studies assessing cancer-specific survival (HR: 1.91, 95% CI: 1.45 to 2.52). Further meta-regression analyses indicated that age and smoking were potential sources of between-study heterogeneity (both P < 0.001). The shape of the Begg's funnel plot seemed symmetrical (Begg's test P = 0.945 and Egger's test P = 0.305).Conclusions: Our findings indicate that metabolic syndrome is associated with an increased risk of postsurgical digestive tract cancer-specific mortality. Continued investigations are needed to uncover the precise molecule mechanism linking metabolic syndrome and digestive tract cancer
    corecore