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Abstract— Recent CNNs (convolutional neural networks) have
become more and more compact. The elegant structure design
highly improves the performance of CNNs. With the development
of knowledge distillation technique, the performance of CNNs
gets further improved. However, existing knowledge distillation
guided methods either rely on offline pretrained high-quality
large teacher models or online heavy training burden. To solve
the above problems, we propose a feature-sharing and weight-
sharing based ensemble network (training framework) guided by
knowledge distillation (EKD-FWSNet) to make baseline models
stronger in terms of representation ability with less training
computation and memory cost involved. Specifically, motivated by
getting rid of the dependence of offline pretrained teacher model,
we design an end-to-end online training scheme to optimize EKD-
FWSNet. Motivated by decreasing the online training burden,
we only introduce one auxiliary classmate branch to construct
multiple forward branches, which will then be integrated as
ensemble teacher to guide baseline model. Compared to previous
online ensemble training frameworks, EKD-FWSNet can provide
diverse output predictions without relying on increasing auxiliary
classmate branches. Motivated by maximizing the optimization
power of EKD-FWSNet, we exploit the representation poten-
tial of weight-sharing blocks and design efficient knowledge
distillation mechanism in EKD-FWSNet. Extensive comparison
experiments and visualization analysis on benchmark datasets
(CIFAR-10/100, tiny-ImageNet, CUB-200 and ImageNet) show
that self-learned EKD-FWSNet can boost the performance of
baseline models by large margin, which has obvious superiority
compared to previous related methods. Extensive analysis also
proves the interpretability of EKD-FWSNet. Our code is available
at https://github.com/cv516Buaa/EKD-FWSNet.

Index Terms— Knowledge distillation, ensemble learning,
weight-sharing blocks, high-efficiency network.
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I. INTRODUCTION

RECENTLY, deep CNNs have shown strong power in
computer vision tasks, such as image recognition [1],

[2], [3], [4], [5], [6], [7], [8], object detection [9], [10],
[11], [12] and semantic segmentation [13], [14], [15], [16],
[17], [18]. However, many high-performance networks always
accompany with enormous trainable parameters, computation
cost and complex modules. In real applications, especially
applications using embedded devices, these networks are hard
to apply. To meet the demand of resource-limited devices,
researchers engage in designing networks with high perfor-
mance and compact structure.

As a strong method for model generalization enhancement,
knowledge distillation is widely applied in resource-constraint
application. With the guidance of large-scale well-optimized
“teacher” models, smaller “student” models can gain consid-
erable performance improvement without using more trainable
parameters and complex modules or operations. Fig.1 shows
two main paradigms of current knowledge distillation guided
training frameworks. The top-left diagram indicates offline
“teacher-student” training framework, where student model
is optimized to approximate large-scale and mature teacher
model. The top-right diagram indicates online “ensemble
teacher-student” training framework [19], [20], [21], [22], [23],
[24], where student model is part of a multi-branch ensem-
ble network and gains knowledge on-the-fly from “ensemble
teacher”. This diagram focuses on utilizing the “ensemble
teacher” to gain sub-optimal generalized knowledge due to
the diversity and redundancy representation of multi-branch
structure.

Although previous knowledge distillation guided training
frameworks are notable and efficient, there are still some weak-
nesses: (1) Offline “teacher-student” training framework (top-
left diagram of Fig.1) depends highly on cumbersome teacher
models, which complicates the training process. Intuitively,
when we expect to train a stronger student baseline model,
designing and training a much stronger teacher model will
become harder. (2) Online “ensemble teacher-student” training
framework (Fig.1 top-right) brings in more training burden.
When classmate branches increase, the training computation
will rapidly increase. Additionally, distillation loss terms
will also rapidly increase when more branches get involved,
which also makes the training process more and more
complicated.
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Fig. 1. The diagram of recent notable knowledge distillation guided training
frameworks and EKD-FWSNet. Diagrams at top-left, top-right and bottom
respectively denote offline teacher-student training framework, student-class-
mate ensemble training framework and EKD-FWSNet.

The weaknesses mentioned above motivate us to propose
an easy-optimized and high-efficiency training framework
guided by knowledge distillation. Specifically, motivated by
not depending on offline “teacher-student” training framework,
we will design an online training scheme. In this scheme, All
baseline models will be optimized in an end-to-end manner
without training teacher models in advance. Motivated by
easing the online training burden, we only use one auxiliary
classmate branch to simplify our proposed architecture and
design less distillation loss functions to simplify the training
process. Based on an efficient architecture, maximizing the
optimization power by exploring the representation potential
of weight-sharing blocks is another motivation of our method.

Based on above-mentioned motivations, we propose a novel
feature-sharing and weight-sharing based ensemble network
guided by knowledge distillation strategy (EKD-FWSNet),
which can make baseline models learn by themselves and get
stronger. As shown in bottom diagram of Fig.1, we construct
a student-classmate training framework with multiple forward
branches using weight-sharing blocks. With one auxiliary
classmate branch, we can construct several forward branches
and utilize the representation diversity of different predictions
to obtain a high-performance ensemble teacher. Specifically,
we first split the main student (baseline model) and classmate
branch with several branch points respectively. Then, we create
shortcut-connections between two neighboring branch points
respectively from classmate and main student branch to con-
struct multiple forward branches. During training, we employ
knowledge distillation mechanism to guide the optimization of
baseline model. Predicted posterior probabilities from different
forward branches are integrated as ensemble teacher to transfer
more mature global information to main student. Intermediate
feature maps are also integrated as ensemble teacher to guide
the main student in semantic level. Particularly, we only distill
integrated knowledge to main student branch. Designing like

this, EKD-FWSNet has efficient and concise knowledge dis-
tillation loss functions where these loss function number will
not increase when more forward branches are involved. During
inference, the auxiliary classmate branch will be removed,
so no extra computation cost will be involved in main student.

In EKD-FWSNet, we use weight-sharing blocks to simplify
ensemble network, which can ease the training burden with
less training memory and computation cost. Previous ensemble
training framework (Fig.1 top-right) [19], [20], [21], [22],
[23], [24] constructs multiple forward branches by introduc-
ing multiple independent auxiliary classmate branches. Com-
pared to these networks, EKD-FWSNet utilizes weight-sharing
blocks to reduce the number and size of auxiliary class-
mate branches. Moreover, when more forward branches are
required, previous ensemble training frameworks have to
employ more classmate branches while EKD-FWSNet only
needs to set more branch points and connect more neighboring
branch points. Obviously, EKD-FWSNet is more efficient and
flexible.

In EKD-FWSNet, we explore the representation potential
of weight-sharing blocks. As shown in Fig.1 bottom, weight-
sharing blocks in EKD-FWSNet are components existing in
more than one forward branches. During forward pass, weight-
sharing blocks provide more than one output feature maps.
During back propagation, different gradient terms from differ-
ent backward paths are integrated together to update the train-
able parameters of weight-sharing blocks. Basically, trainable
parameters of weight-sharing blocks in EKD-FWSNet have the
representation potential to fit in with different gradient orienta-
tions. This proves that multiple forward branches can provide
diverse predictions to form a more generalized ensemble
teacher. However, the diversity decrease resulted from deeper
weight-sharing blocks may harm the performance of ensemble
teacher. To compensate this decrease, we implement online
feature augmentation by inserting feature alignment (FA) mod-
ules including squeeze-and-excitation (SE) block [25], channel
attention module (CAM) [17] and Dropout [26] block after
weight-sharing blocks.

To verify the performance of EKD-FWSNet, we
conduct extensive experiments on benchmark datasets
(CIFAR-10/100 [27], tiny-ImageNet1), CUB-200 [28] and
ImageNet [81]. Here, we select notable baseline models
(E.g., ResNet [4], [30] and EfficientNet [31]) to construct
EKD-FWSNet. Comparison experiments clearly show
that baseline models training in EKD-FWSNet gain huge
improvement. In some lightweight baseline models such as
ResNet-20 and ResNet32, the classification accuracy can
surprisingly improve by more than 4%, which surpasses
the previous state-of-the-art methods. Some high-efficiency
baseline models can improve by more than 8% on CUB-200,
which is also encouraging.

This paper is extended from our conference paper [32]. The
extensions are summarized as follows: (1) We make detailed
mathematical analysis and explanation on the self-learned
mechanism of EKD-FWSNet in terms of weight-sharing
blocks. (2) To further make the performance of EKD-FWSNet

1https://tiny-imagenet.herokuapp.com
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more convincing, we add more comparison experiments on
two large-scale benchmark datasets, which are CUB-200 [28]
and ImageNet [81]. (3) Besides constructing EKD-FWSNet on
lightweight and high-efficiency models, we supplement some
large-scale baseline models (E.g., ResNet-50, ResNet-101 [4])
based EKD-FWSNet to prove the generalization and robust-
ness. (4) We further add comparison with dynamic-routing
based dynamic neural networks including more related works
and experiments (Appendix). (5) We add more comparison
experiments with some most recent methods.

The main contributions of our paper are listed as follows.
• We maximally exploit the potential of weight-sharing

blocks to ease the training burden and provide an insight
about designing easy-optimized knowledge distillation
guided ensemble training framework.

• We add more abundant experiments on two large-scale
benchmark datasets, CUB-200 and ImageNet. We also
add more large-scale models besides lightweight and
high-efficiency models to construct EKD-FWSNet. All
this extended experiments make our proposed method
more convincing.

• We add detailed theoretical explanation and mathematical
analysis on weight-sharing blocks, which proves the
interpretability of EKD-FWSNet.

• Baseline models optimizing in EKD-FWSNet make huge
progress than individually optimizing. On notable bench-
mark classification datasets, EKD-FWSNet performs bet-
ter than previous SOTA methods.

II. RELATED WORK

A. High-Efficiency Networks

High-efficiency networks can work well on resource-limited
embedded devices with compact structure. Recently, various
networks such as SqueezeNet [33], MobileNet [34], [35], [36],
ShuffleNet [37] and EfficientNet [31] utilize elegant structure
to make the model perform well with less cost. From another
perspective, some researchers focus on applying low-bit
technique on baseline model [38], [39], [40] to directly
exponentially accelerate the inference. In addition, network
pruning [41], [42], [43] strategy is also widely studied aiming
at constructing high-efficiency models by removing redundant
trainable parameters or complex operations. In this paper,
we also aim to design high-efficiency network. Differently,
we do not focus on designing compact network components or
using pruning and quantization. We mainly focus on exploring
optimizing and learning power.

B. Knowledge Distillation Guided Training Framework

Knowledge distillation (KD) is a classical technique [44] to
transfer more mature information from a large-scale teacher
model to a smaller-scale student model. The top-left diagram
shows offline knowledge distillation guided training frame-
work. Reference [45] integrate knowledge distillation and
logits-mimicking to train a compact model by approximating
another larger, more complex model. References [46], [47],
[48], [49], [50], [51], [52], and [53] apply knowledge distilla-
tion both on posterior logits and intermediate feature maps for

feature consistency in each stage of smaller compact model.
Besides directly distilling knowledge on logits or intermediate
feature maps, many methods exploit knowledge distillation on
second-order feature. Reference [54] propose AFD (attention-
based feature distillation), which utilizes relative similarities
between features of teacher and students to control distillation
intensities of feature pairs. References [48] and [55] propose
pixel-wise distillation and holistic distillation respectively on
similarity feature and holistic embedding.

Recently, many notable works investigate online knowledge
distillation training framework integrating ensemble learn-
ing strategy to optimize models in an end-to-end manner
without depending on pretrained teacher models (Fig.1 top-
right) [19], [56], [57]. Specifically, [58] and [59] propose
an elegant knowledge distillation guided training framework
to improve high-efficiency models by exploring the repre-
sentation invariance within baseline model itself. Similarly,
FRSKD [60] designs a self-distillation network to provide
refined feature maps to distill itself on intermediate feature
maps. MixSKD [61] integrates Mixup augmentation [62] and
self-distillation mechanism. With this novel idea, MixSKD
improves baseline models by large margin and achieves com-
petitive results on image classification tasks. References [63]
and [64] construct ensemble teacher from iterative snapshots
and apply knowledge distillation from ensemble teacher to
baseline models. This design can improve the predictive power
of compact models. References [20], [21], [22], [23], and [24]
all design student-classmate ensemble training framework to
obtain knowledge of ensemble teacher, which can guide both
student and classmate efficiently in an end-to-end manner.
AFID [65] directly employs one more complete sub-net to
construct a two-branch ensemble training network. Besides
distilling knowledge from ensemble teacher, it further pro-
poses a feature interaction module to employ mutual learning
between attentive feature maps of two sub-nets. PCL [66]
is another outstanding method. Besides generating ensemble
teacher, it adds a peer mean teacher, which is a temporal
mean model updated by EMA (Exponential Moving Average)
technique. This peer mean teacher can further boost the
performance of baseline model through transferring knowl-
edge collaboratively. In this paper, our proposed self-learned
training framework also belongs to student-classmate ensem-
ble training framework. Therefore, we mainly compare our
EKD-FWSNet with the above-mentioned online ensemble
training frameworks to show the superiority of our method.

C. Unsupervised Representation Learning Methods

Our proposed training framework is also related to some
notable unsupervised representation learning methods [67],
[68], [69], [70] in terms of knowledge distillation and
self-supervised learning strategy among branches. The dif-
ferences can be listed in the following. First, unsupervised
representation learning methods utilize contrastive learning
to bidirectionally transfer knowledge among feature proto-
types of original image and transformed images. This design
can enhance the generalization ability through maximally
exploiting the inter-class variation and intra-class similarity in



6664 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 33, NO. 11, NOVEMBER 2023

Fig. 2. Overview of EKD-FWSNet. In EKD-FWSNet, “bp1_ms”, “bp2_ms”, “bp1_cm” and “bp2_cm” are branch points on main student and classmate
branch. We construct three forward branches by creating shortcuts between two branches (“bp1_ms” and “bp1_cm”; “bp2_ms” and “bp2_cm”). On classmate
branch, CM_layer2 and CM_layer3 respectively have same type of convolutional blocks as layer1 and layer2. To optimize EKD-FWSNet, we apply hard-label
learning on posterior class probabilities and soft-label distillation on both posterior class probabilities distillation and intermediate feature maps.

embedded space. In EKD-FWSNet, we use knowledge distilla-
tion mechanism mainly aiming at transferring knowledge from
sub-optimal ensemble teacher to naive baseline model. Second,
we actually have different motivations of constructing multiple
forward branches with unsupervised representation learning
methods. Specifically, multiple branches in their architectures
is to provide multiple transformations of images. Multiple
branches in our architecture mainly aim to provide diverse
predicted class probabilities to obtain a sub-optimal ensemble
teacher.

D. Dynamic-Routing Based Dynamic Neural Network

Dynamic neural network (DNN) [71] can adapt their
structures during inference according to the configuration
of computation and memory budgets of embedded devices.
Dynamic-routing based DNN focuses on dynamically extract-
ing the different-depth/width sub-nets inside a deep “Super-
Net”. SkipNet [72] utilizes the gating policy to selectively
skip some redundant blocks and further combines rein-
forcement learning with supervised-learning task for non-
differentiable skipping decisions. Similarly, ConvNet-AIG and
Batch-shaping [73], [74] can adaptively decide the network
topology conditioned on the input image. Recently, combin-
ing knowledge distillation and dynamic-routing based DNN
becomes more and more popular. BYOT and slimmable neural
network [76], [80] dynamically generate several small student
models from a large-size teacher model in depth-level or
width-level and distill knowledge from teacher to each student,
which can boost the performance of smaller student model
without harming the large teacher model. In this paper, the
proposed EKD-FWSNet can be regraded as dynamic-routing
architecture, because each forward branch can be regarded

as a sub-net inside the whole ensemble training framework.
To some degree, we are inspired by the architecture of
dynamic-routing based DNN. Therefore, we conduct experi-
ments in appendix to compare EKD-FWSNet with BYOT [80],
which is a notable dynamic-routing based DNN related to our
work.

III. PROPOSED METHOD

A. Architecture of EKD-FWSNet

To improve the representation power of baseline model
without adding extra trainable parameters and designing
complex modules, we propose EKD-FWSNet which is a
self-learned efficient training framework guided by knowledge
distillation. To construct EKD-FWSNet (Fig.2), we respec-
tively set two branch points on main student branch (bp1_ms,
bp2_ms) and classmate branch (bp1_cm, bp2_cm). We then
create connections between the two neighboring branch
points from main student and classmate branch (connec-
tions between bp1_ms and bp1_cm; connections between
bp2_ms and bp2_cm). In this way, we construct a three-
forward-branch ensemble training framework, where the
three forward branches include one forward branch of main
student (baseline model) (“conv1→layer1→layer2→layer3”)
and two forward branches of classmate (“conv1→layer1→

CM_layer2→CM_layer3”; “conv1→ layer1→layer2→CM_
layer3”). To flexibly construct a training framework containing
more forward branches, we can create more connections
between the main student and classmate branch by setting
more branch points. In addition, weight-sharing blocks exist
in more than one forward branches, so they have to adapt with
different branches. In EKD-FWSNet, we maximally exploit
the adaptive representation potential of weight-sharing blocks.
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Fig. 3. The comparison node diagram between EKD-FWSNet and previous ensemble training framework. In this diagram, the nodes denote convolutional
blocks (layers) of main student and classmate branches. Specifically, diagram (a) and (b) respectively denote three-forward-branch and four-forward-branch
EKD-FWSNet. Diagram (c) and (d) respectively denote previous ensemble training framework. Through connecting neighboring branch points from main
student and classmate branch, we can create more forward branches without using any more trainable parameters.

During training, the batch images first pass through “conv1
layer1”. Then, the feature maps will be fed into every forward
branches to generate different predictions. During inference,
we will remove classmate branch and only leave the blocks
on main student branch.

B. Weight-Sharing Blocks of EKD-FWSNet

Previous online “ensemble teacher-student” training frame-
works (Fig.1 top-right) depend on auxiliary classmate
branches to obtain multiple predictions for ensemble teacher.
However, when more predictions are required, more auxiliary
classmate branches will be involved, which lead to exponen-
tial cost on training memory and computation. Additionally,
distillation loss functions also increase rapidly with more
classmate branches involved, which will confuse the optimiza-
tion. To ease the training burden and design a high-efficiency
knowledge distillation guided ensemble training framework,
we exploit the potential of weight-sharing blocks. In this
paper, weight-sharing blocks indicate convolutional blocks
containing several convolution units, batch normalization units
and activation functions, which exists in more than one for-
ward branches. As shown in Fig.2, layer1 and layer2 are
two weight-sharing blocks in main student branch, while
CM_layer3 is weight-sharing block in classmate branch.
To show the superiority of weight-sharing blocks in a concise
way, we use node diagram (Fig.3). From Fig.3, we find
that: (1) Previous ensemble training frameworks (diagram
(c) and (d)) construct multiple forward branches completely

depending on multiple auxiliary classmate branches; (2) Our
training framework (diagram (a) and (b)) only depends on
one auxiliary classmate branch. For more forward branches,
we simply split the main student and classmate branch with
more branch points. (3) From diagram (a) to (b), it is clear
that even when more predictions are required, no extra training
parameters will be involved into EKD-FWSNet and the com-
putation cost increase in a slow way. From diagram (c) to (d),
it shows that when more forward branches are constructed,
previous framework has to increase a complete classmate
branch with huge memory and computation cost. As a whole,
utilizing weight-sharing blocks is efficient on obtaining more
generalized knowledge by constructing more forward branches
with less trainable parameters and computation cost.

Convolutional blocks in EKD-FWSNet have four types.
As shown in Fig.4, common blocks (Fig.4 diagram (a))
have one input and one output feature map existing
only in one forward branch while weight-sharing blocks
(Fig.4 diagram (b), (c), (d)) have more than one input or output
existing in more than one forward branches. Specifically, more
out-degrees of weight-sharing blocks (diagram (b)) bring in
more gradients terms from more backward paths. It explores
the representation potential of weight-sharing blocks to fit
in with different gradient orientations. More in-degrees of
weight-sharing blocks (diagram (c) and (d)) bring in different
input feature maps from more forward branches. It explores
the potential of weight-sharing blocks to represent feature
maps with different distributions. All in all, we exploit the
representation potential of weight-sharing blocks to make
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Fig. 4. Node diagrams of convolutional blocks in EKD-FWSNet.
Diagram (a) denotes common blocks with one in-degree and one out-degree.
Diagram (b) denotes weight-sharing blocks with one in-degree and two
out-degrees. Diagram (c) and (d) denote weight-sharing blocks with two
in-degrees and two out-degrees. Differently, the two output feature maps
of diagram (c) will pass through same blocks while the two output feature
maps of diagram (d) will pass through different blocks. Here, in-degree and
out-degree respectively indicate input feature map and output feature map of
convolutional blocks.

ensemble training framework become strong with concise
structure.

As shown in Eq.1, common blocks (diagram (a)) uses one
input feature map to provide one output feature map. As shown
in Eq.2, weight-sharing block in diagram (b) also uses one
input feature maps. Different from common blocks, the one
output feature map will be served as input feature map in more
than one forward branches at next stage. Eq.3 denotes the for-
ward process of weight-sharing blocks in diagram (c) and (d).
In diagram (c), output feature maps will be fed into same next-
stage block. Differently in diagram (d), output feature maps
will be fed into different next-stage blocks.

F(i) = f (wi ; F(i − 1)) (1)

Fk(i) = f (wi ; F(i − 1)) (2)

Fk(i) = f (wi ; Fk(i − 1)), k = 1, 2, · · · , N i
out (3)

where f (·) denotes convolutional blocks. F(i), F(i − 1)

denotes feature maps in i th and (i−1)th stage. Fk(i) represents
the i th-stage feature map existing in kth forward branch.
N i

out indicates the number of out-degrees at i th stage.

C. Online Feature Augmentation

In EKD-FWSNet, we design weight-sharing blocks to pro-
vide diverse predictions with less memory and computation
increment. However, when the number of weight-sharing
blocks increase, representation among forward branches will
gradually get close, which harms the performance of ensemble
teacher. On this issue, we propose online feature augmentation
blocks (FA) to enrich the patterns of feature maps. In EKD-
FWSNet, we mainly introduce squeeze-and-excitation (SE)
block [25], channel-attention-module (CAM) [17] and Dropout
block [26] as online FA blocks. Among them, SE block and
CAM utilize channel-wise attention for feature augmentation.
Dropout block provides feature augmentation by occupation
with random rate.

D. Knowledge Distillation in EKD-FWSNet

Designing well-optimized knowledge distillation mecha-
nism is crucial for optimizing baseline model. Distillation loss
functions of previous “student-classmate” ensemble training
frameworks [20], [21], [22], [23] will increase rapidly when
more classmate branches get involvement. More distillation
loss functions will make the training complex and confuse
the optimization. To make optimization easier, we only design
two distillation loss functions keep the loss function number
unchanged when involving more forward branches.

1) Distillation on Class Probabilities: Followed Hinton
et al. [44], we apply temperature-scaled softmax operation
to generate the posterior class probability which is denoted
as p(ŷ = yi |x) for input batch images x. Eq.4 shows
the formulation. We then formulate the final posterior class
probability of main student forward branch as pms(x) =

{pms(ŷ = 1|x), · · · , pms(ŷ = M |x)}. Similarly, we define
the class probability of kth forward branch as pk

cm(x).

p(ŷ = yi |x) =
e(zi /T )∑M

j=1 e(z j /T )
(4)

where z denotes the logits, which is a vector output from
fully-connected classification layer. M and T respectively
denote the number of the categories and the temperature.
Additionally, T is set to 3 in this paper.

If the total number of classmate forward branches is set
as K , we first generate ensemble teacher posterior class
probability ( pet(x)) by averaging all posterior class prob-
abilities of main student and classmate forwards branches.
We formulate this process in Eq. 5 and Eq. 6. Then we adopt
the common KL (Kullback-Leibler) divergence constraint as
knowledge distillation loss functions to guide main student
(Eq. 7). In addition. N in Eq. 7 indicates the number of mini-
batch size.

pet (ŷ = yi |x) =
e( 1

K+1
∑K+1

k=1 zki )/T∑M
j=1 e( 1

K+1
∑K+1

k=1 zk j )/T
(5)

pet (x) = {pet (ŷ = 1|x), . . . , pet (ŷ = M |x)} (6)

KLms =
1
N

N∑
n=1

KL
(

pms(xn)∥ pet (xn)
)

= −
1
N

N∑
n=1

pet (xn)log
pms(xn)

pet (xn)
(7)

Trained through knowledge distillation on class probabili-
ties, main student can “discuss” with classmates and “absorb”
knowledge from each other. The ensemble teacher class prob-
ability is not used to guide classmates because we do not want
classmates to learn in same learning schedule as main student,
especially when more weight-sharing blocks get involved.
Also, with the involvement of more branches, no extra loss
functions will be involved. This concise design make the
training process concise and efficient.

2) Ensemble Attention Distillation on Intermediate
Feature Maps: To enhance the semantic-level guidance
of main student, we adopt ensemble-attention knowledge
distillation strategy. Fig. 5 shows that intermediate feature
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Fig. 5. The process of ensemble attention distillation. Druing forward
process, attention maps of main student and classmates forward branches
will be fused to form ensemble attention teacher. During backward, attention
distillation loss function is used to transfer knowledge from ensemble teacher
to main student.

map of main student will be guided by attention maps of
ensemble teacher. Eq. 8 and Eq.9 represent the attention map
generation process.

Ams =

C∑
c=1

(Fms)c, Ak
cm =

C∑
c=1

(Fk
cm)c (8)

Aet =
1

K + 1
(norm(Ams) +

K∑
k=1

norm(Ak
cm)) (9)

Here, we denote C as the number of feature map chan-
nels. we also denote spatial-wise normalization operation as
norm(·). Fms, Fk

cm ∈ RC×H×W denote feature maps of main
student and kth classmate forward branch with same resolu-
tion. Ams, Ak

cm ∈ RH×W denote attention maps, which are
used to construct ensemble attention teacher (Aet ). To transfer
mature knowledge from Aet to Ams, we apply MSE (mean-
squared-error) loss shown in Eq. 10.

MSEms =
1
N

N∑
n=1

MSE
(

Ams(xn)∥Aet(xn)
)

=
1
N

N∑
n=1

H∑
h=1

W∑
w=1

(
(ams(xn))hw − (aet (xn))hw

)2

(10)

where H and W are height and width of the attention map
and ((ams)(xn))hw denotes the pixel value at position (h, w)

on attention map of nth batch image.

E. Optimizing EKD-FWSNet

1) Combined Loss in EKD-FWSNet: To optimize baseline
model in EKD-FWSNet, we first use cross-entropy loss (hard-
label training) for each forward branch where Lms and Lk

cm
respectively make effect on main student and classmates
forward branch. We then employ the two types of distillation
loss functions (Eq. 7, Eq. 10). Finally, we combine all the loss
functions for optimization. The combined loss (L) is defined
in Eq. 11.

L = Lms +
1
K

K∑
k=1

Lk
cm︸ ︷︷ ︸

cross-entropy

+ w · KLms︸ ︷︷ ︸
KL distillation

+ α · MSEms︸ ︷︷ ︸
ensemble attention

(11)

In Eq. 11, w and α are two hyper-parameters for propor-
tion adjustment of distillation and ensemble attention loss.

In experiments of this paper, the values of w and α are
respectively 60 and 1.0. Additionally, ensemble attention
distillation is applied only at the neighboring layer before
fully-connected layer. Forcing baseline model to approximate
low-level features in early stage may obtain more redundant
information or noise than useful knowledge.

2) Optimizing Weight-Sharing Blocks: Weight-sharing
blocks exist in EKD-FWSNet in three types. As shown in
diagram (b) of Fig.4, one input feature map is fed into
weight-sharing block and same output feature map then pass
through two forward branches. During backpropagation, the
trainable parameters will be updated from two gradient terms,
which is shown in Eq.12. As shown in diagram (c) and (d) of
Fig.4, the weight-sharing blocks have two input feature maps
and two output feature maps. Eq.13 shows the gradient terms.

∂L
∂w

=

Nout∑
k=1

(
∂L

∂ Fk
out

·
∂ Fk

out

∂w
)

∂L
∂ Fin

=

Nout∑
k=1

(
∂L

∂ Fk
out

·
∂ Fk

out

∂ Fin
)

(12)


∂L
∂w

=

Nout∑
k=1

(
∂L

∂ Fk
out

·
∂ Fk

out

∂w
)

∂L

∂ Fk
in

=
∂L

∂ Fk
out

·
∂ Fk

out

∂ Fk
in

(13)

where Nout denotes the number of out-degrees. (E.g. In dia-
gram (b) of Fig.4, Nout = 2). Fk

out represents the output feature
map in kth forward branch. Fin is the single input feature
map. Weight-sharing blocks in diagram (c) and (d) have same
gradient on trainable parameters (w) as weight-sharing blocks
in diagram (b). The gradient on different input feature maps
will be fed backward in different paths.

3) Optimizing Baseline Model in EKD-FWSNet: The pro-
posed EKD-FWSNet is a self-learned efficient training frame-
work which is designed to optimize baseline model in an
end-to-end manner. During forward pass, we construct mul-
tiple predictions and generate ensemble teacher. This process
is shown in Algorithm.1. During backpropogation, we use
ensemble teacher to transfer knowledge to baseline model.
This process is shown in Algorithm.2.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets and Implementation Details

In this paper, CIFAR [27] (CIFAR-10/100), tiny-ImageNet,2

CUB-200 [28] and ImageNet [81] are four benchmark datasets
for experiments. CIFAR consists of 50000 training images
and 10000 testing images with small image scale (32 × 32).
Tiny-ImageNet dataset has 200 categories. each category owns
500 training RGB images 50 testing RGB images. The reso-
lution of all images are 64 × 64. CUB-200 contains 200 bird
categories and total 11,788 images are split into 5994 images
for training and 5794 images for testing. ImageNet consists
1000 categories, where 1.2 million 224×224 images are used
for training and 50000 images for validation.

2https://tiny-imagenet.herokuapp.com
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Algorithm 1 Forward Pass in EKD-FWSNet
Require: A minibatch of training samples x = {(x1, y1),

. . . , (xN , yN )}. Define a EKD-FWSNet (Fig.2) where the
number of classmate forward branches is set as K . Initialize
trainable parameters w = {(w1, . . . ,wl )}

Ensure: Posterior class probability of main student ( pms(x)),
classmate forward branches ( pk

cm(x)) and ensemble teacher
( pet(x)). Attention map of main student (Ams), classmate
forward branches (Ak

cm) and ensemble teacher (Aet ).
Forward Pass:
F(0) = x ∈ RN×C×H×W

for i = 1, . . . , l blocks do
if Common blocks then

Compute as diagram (a) of Fig.4: F(i) =
f (wi ; F(i − 1))

else if Weight-sharing blocks then
if Single input feature map then

Compute as diagram (b) of Fig.4: F(i) =
f (wi ; F(i − 1))

else
Compute as diagram (c) and (d) of Fig.4: Fk(i) =
f (wi ; Fk(i − 1)), k = 1, 2, · · · , N i

out
end if

end if
end for
Get pms(x), pk

cm(x) and pet(x) using Eq.4 ∼ Eq.6.
Get Ams, Ak

cm and Aet using Eq.8 and Eq.9.

Algorithm 2 Optimizing Baseline Model in EKD-FWSNet
Require: Define a EKD-FWSNet (Fig.2) where the number of

classmate forward branches is set as K . Initialize trainable
parameters w = {(w1, . . . ,wl )}

Ensure: Updated trainable parameters w′ = {(w′
1, . . . , w′

l )}
Forward Pass:
Get pms(x), pk

cm(x), pet(x), Ams, Ak
cm and Aet using

Algorithm.1.
Backpropogation:
Clear gradients with zero-grad operation
Get KL loss K Lms using Eq.7.
Get ensemble attention loss M SEms using Eq.10.
Get combined loss L using Eq.11.
for i = l, . . . , 1 blocks do

if Common blocks then
Compute gradients with common backward operation

else if Weight-sharing blocks then
Compute gradients using Eq.12 and Eq.13

end if
Update trainable parameters wi with step operation

end for

In this paper, ResNet [4] and EfficientNet [31] are selected
as baseline models to construct EKD-FWSNet. The layer
combination of baseline models are listed in Tab.I. Followed
previous works, we slightly modify the “conv1” block of each
baseline model to keep the resolution of output feature maps as
same as input images. On CIFAR-10/100, we use Stochastic

TABLE I
THE LAYER COMBINATIONS OF BASELINE MODELS [4], [31]. BASELINE

MODELS ARE COMBINED WITH SEVERAL LAYERS IN DIFFERENT
STAGES. E.G., RESNET-34 HAS FOUR LAYERS IN FOUR STAGES,
WHERE EACH LAYER RESPECTIVELY HAS 3, 4, 6 AND 3 BASIC

BLOCK UNITS. ADDITIONALLY, THE BLOCK UNIT INSIDE
EACH LAYER OF RESNET AND EFFICIENTNET ARE

RESPECTIVELY BASIC/BOTTLENECK BLOCK
UNIT AND MBCONV BLOCK UNIT

Gradient Descent (SGD) as optimizer in which the initial
momentum value is 0.9 and weight decay value is 0.0001.
In SGD optimizer, the learning rate is initialized as 0.1. During
training, we set the batch size as 128. All baseline models
in EKD-FWSNet will be trained with 300 epochs, where the
learning rate will be divided 10 times at 150th and 250th

epoch. On tiny-ImageNet, CUB-200 and ImageNet datasets,
we adopt similar initial settings. Specifically, we follow the
configuration on CIFAR and use same SGD optimizer. Dif-
ferently, all models are trained with 100 epochs. The initial
learning rate is 0.01 and will be decreased by 10 times at epoch
50 and 75 in training phase. In addition, For tiny-ImageNet, the
input image size is 64 × 64, while for CUB-200 and ImageNet,
the input images are resized to 224 × 224.

B. Experimental Results

1) Classification on Lightweight Baseline Models: In this
paper, lightweight models indicate models with simple struc-
ture (less complex operators) and less trainable parameters.
Those models are mainly designed to satisfy devices with lim-
ited resource. Therefore, lightweight baseline models always
have to sacrifice performance to lower down computation cost
in inference phase. In lightweight baseline model based EKD-
FWSNet, we construct a three-forward-branch structure by
setting the first branch point after “ layer1” (Fig.2). As for FA
blocks, we apply Dropout blocks to compensate diversity loss.

To prove the effectiveness on improving lightweight models,
we conduct experiments on notable lightweight model series,
ResNet-20/32/44/56. It is worth noting that lightweight models
are always designed for relatively simple classification tasks.
Therefore, we only evaluate these models on small scale
dataset, CIFAR-10/100. From the results on CIFAR-10/100
shown in Tab. II, we find that lightweight baseline models
optimizing in EKD-FWSNet improve encouragingly. On the
classification experiments of CIFAR-10, ResNet-20/32 respec-
tively improve by 1.68% and 1.32% training in EKD-
FWSNet. Larger lightweight baseline models (ResNet-44/56)
also improve by large margin. On CIFAR-100, a more diffi-
cult dataset, EKD-FWSNet also performs excellent on clas-
sification experiments. ResNet-32 training in EKD-FWSNet
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TABLE II
TOP-1 ERROR RATE (%) OF LIGHTWEIGHT BASELINE MODELS ON
CIFAR-10/100. “BL” MEANS INDIVIDUALLY TRAINING BASELINE

MODELS. ↓ MEANS THE MARGIN OF ERROR RATE DECREASE.
THE BEST SCORE IS HIGHLIGHTED IN BOLD

TABLE III
TOP-1 ERROR RATE (%) OF HIGH-EFFICIENCY MODELS ON CIFAR-100

AND TINY-IMAGENET. “EB0/EB2/EB4” ARE THREE EFFICIENTNETS
WITH DIFFERENT LAYER COMBINATIONS. THE BEST

SCORE IS HIGHLIGHTED IN BOLD

improve by 4.27% (error rate: 30.73% ∼ 26.46%) over individ-
ually training ResNet-32. Generally, compared to individually
training baseline models, the average accuracy improvement
of ResNet series optimizing in EKD-FWSNet is 3.89%.

2) Classification on High-Efficiency Baseline Models:
In this paper, high-efficiency models indicate some recent
compact models, which always utilize complex modules or
operations to achieve high performance with fewer cost. Com-
pared to lightweight models, high-efficiency models are more
compact with high-efficiency design, so further improve their
generalization capacity becomes harder. Here, we select to
construct four-forward-branch structure. For ResNet-18/34, the
first branch point is set after “layer1” and two more branch
points are respectively set after “layer2” and “layer3”. For
EfficientNet series, the first branch point is set after “layer1”
and two more branch points are respectively set after “layer3”
and “layer5”.

For high-efficiency baseline models, evaluating on sim-
ple classification tasks is not convincing, because they
can all achieve very high results trained individually.
Therefore, for high-efficiency baseline models, we conduct
experiments on CIFAR-100, tiny-ImageNet, CUB-200 and
ImageNet. The experiments in Tab.III and Tab.IV prove
that optimizing with EKD-FWSNet, high-efficiency mod-
els can also get improved. From Tab.III, we find that
ResNet-18 and ResNet-34 optimizing in EKD-FWSNet make
huge progress. Especially on tiny-ImageNet, ResNet-18 in
EKD-FWSNet surpasses individually training baseline model
by 4.10% (30.91%∼26.81%). Experiments on EfficientNet
further guarantee the efficiency of EKD-FWSNet. Even though

TABLE IV
TOP-1 ERROR RATE (%) OF HIGH-EFFICIENCY MODELS ON LARGE-
SCALE DATASETS, CUB-200 AND IMAGENET WITH SINGLE-CROP

TESTING. THE BEST SCORE IS HIGHLIGHTED IN BOLD

TABLE V
TOP-1 ERROR RATE (%) OF LARGE-SCALE MODELS ON LARGE-SCALE

DATASETS, CUB-200 AND IMAGENET WITH SINGLE-CROP
TESTING. THE BEST SCORE IS HIGHLIGHTED IN BOLD

Eb0/Eb2/Eb4 have already performed very competitive, they
can still be improved by EKD-FWSNet. The average improve-
ment is more than 1%. From Tab.IV, we observe that
high-efficiency baseline models training in EKD-FWSNet
can outperform individually training models both on
CUB-200 and ImageNet. Particularly, ResNet-18 training in
EKD-FWSNet achieves 8.43% improvement. Moreover, EKD-
FWSNet shows much strong power on CUB-200 (Baseline
models improve by large margin). The reason is that the
multi-branch structure of EKD-FWSNet can possibly bring
in diverse visual attentions [77], which can boost the model’s
discriminative ability on fine-grained classification task.

3) Classification on Large-Scale Baseline Models: In this
paper, large-scale baseline models indicate wide or deep
models with large number of trainable parameters and high
computation. These models always gain high performance
improvement depending on high computation and memory
cost. In large-scale baseline model based EKD-FWSNet,
we construct a four-forward-branch structure by setting the
branch point after “layer1”, “layer2” and “layer3”, which
follows the configurations of high-efficiency baseline model
based EKD-FWSNet.

In this paper, we select ResNet-50 and ResNet-101 as
large-scale baseline models (Tab.I) and conduct classification
experiments on large-scale dataset CUB-200 and ImageNet.
As shown in Tab.V, ResNet-50/101 training in EKD-FWSNet
perform better than individually training. Particularly, the
improved results on CUB-200 and ImageNet further show that
EKD-FWSNet has strong generalization ability on large-scale
benchmark dataset. Even though large-scale models have
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TABLE VI
TOP-1 ERROR RATE (%) OF LIGHTWEIGHT BASELINE MODEL

COMPARISON ON CIFAR-10/100. ALL RESULTS ARE “AVERAGE
VALUE ± STANDARD DEVIATION” OF THREE RUNS. IN ADDITION,

“SD” AND “OEM” RESPECTIVELY INDICATE METHOD OF [59],
AND [20]. THE BEST SCORE IS HIGHLIGHTED IN BOLD

already achieved high-performance, they still have potential to
become better. Our EKD-FWSNet can explore this potential
with self-learned mechanism.

4) Classification Comparison With Knowledge Distillation
Guided Training Framework: Compared to individually train-
ing, baseline models training in EKD-FWSNet show encour-
aging improvement. To further prove the effectiveness of
EKD-FWSNet, we conduct comparison experiments with
recent notable knowledge distillation guided training frame-
works [20], [22], [23], [24], [51], [59], [60], [61], [63]. Specif-
ically, KD-ONE [22], OEM [20], DCCL [24], AFID [65]
and PCL [66] are recent notable methods which combines
knowledge distillation strategy with ensemble learning. All
these three methods are student-classmate training framework
(Fig.1 top-right).DML [23], FRSKD [60], MixSKD [61] and
SD [59] are recent outstanding methods which enhance the
optimization of baseline models by constructing multi-branch
self-distillation guided training frameworks. These methods
all exploits the data representation invariance by knowledge
transferring between main student and classmate branches.
KESI (Knowledge Distillation from Ensembles of Snapshots
of Iterative Pruning) [63] constructs ensemble teacher from
snapshots of iterative pruning and uses ensemble distillation
mechanism to improve the representation power of compressed
models.

a) Lightweight baseline models comparison: We com-
pare EKD-FWSNet with previous excellent methods on
lightweight models for CIFAR-10/100 classification task.
In Tab.VI, we compare with SD [59] and OEM [20] on
ResNet-20/32/44/56. Obviously, baseline models optimizing
in EKD-FWSNet perform better. Especially on CIFAR-100,
ResNet-20/32/44/56 can all surpass [59] and [20] by more
than 1%. Since ResNet-32 is a typical lightweight baseline
model, which is widely selected for many previous advanced
methods, we further make comparison experiments on
ResNet-32. Results shown in Tab.VII show that EKD-FWSNet
has little inferiority compared to AFID [65] and PCL [66].

b) High-efficiency baseline models comparison: We
compare EKD-FWSNet with previous excellent methods on
high-efficiency baseline models for CIFAR100, tiny-ImageNet,
CUB-200 and ImageNet classification. (1) On CIFAR-100,
we compare EKD-FWSNet with OEM [20] on EfficientNet-
b0/b2/b4 and compare EKD-FWSNet with SD [59] on
ResNet-18/34. The results shown in Fig.6 clearly shows that

TABLE VII
TOP-1 ERROR RATE (%) COMPARISON ON RESNET-32 FOR

CIFAR-10/100 CLASSIFICATION. ALL RESULTS ARE
“AVERAGE VALUE ± STANDARD DEVIATION”

OF THREE RUNS. THE BEST SCORE
IS HIGHLIGHTED IN BOLD

Fig. 6. Top-1 error rate (%) high-efficiency baseline model comparison on
CIFAR-100. All results are average values of three runs. In addition, “SD”,
“OEM” and “KESI” respectively indicate method of [59], [20] and [63].

TABLE VIII
TOP-1 ERROR RATE (%) COMPARISON ON RESNET-18 FOR CIFAR-100

AND CUB-200 CLASSIFICATION. ALL RESULTS ARE “AVERAGE
VALUE ± STANDARD DEVIATION” OF THREE RUNS.

THE BEST SCORE IS HIGHLIGHTED IN BOLD

high-efficiency baseline models achieve lower error rate opti-
mizing with EKD-FWSNet. (2) On CIFAR-100 and CUB-200,
ResNet-18 is a common selected typical high-efficiency
baseline model. Here, we make more comparison experi-
ments (Tab.VIII) on ResNet-18. For CIFAR-100 classification
task, EKD-FWSNet achieves comparable results with pre-
vious SOTA method [61]. For CUB-200 classification task,
EKD-FWSNet shows strong power and achieves new SOTA
results, which further proves that EKD-FWSNet has strong
power on fine-grained image classification task. Inspired by
MixSKD [61], we also apply Mixup into EKD-FWSNet.
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TABLE IX
TOP-1 ERROR RATE (%) COMPARISON ON RESNET-18/34 FOR

TINY-IMAGENET AND IMAGENET CLASSIFICATION.
“†” MEANS LOADING IMAGENET-PRETRAINED

WEIGHTS FOR TINY-IMAGENET CLASSIFICATION.
THE BEST SCORE IS HIGHLIGHTED IN BOLD

Here, we simply serve Mixup as a data augmentation tech-
nique, so it can smoothly be applied in our architecture.
The results show that Mixup contributes on improving EKD-
FWSNet. (3) On tiny-ImageNet and ImageNet, previous meth-
ods widely make comparison using ResNet-18 and ResNet-
34 as baseline models. Followed their experimental setting,
we evaluate the performance of ResNet-18/34 optimizing
in EKD-FWSNet. The results are shown in Tab.IX. For
tiny-ImageNet classification task, EKD-FWSNet outperforms
previous methods on optimizing ResNet-34 and achieves com-
parable performance on optimizing ResNet-18. For ImageNet
classification task, EKD-FWSNet surpasses previous methods
(including AFID [65] and PCL [66]) on both ResNet-18
and ResNet-34. Moreover, to fairly compare with KESI [63],
we load ImageNet-pretrained weights on ResNet-18/34 for
tiny-ImageNet classification and naturally obtain more com-
petitive results.

c) Large-scale baseline models comparison: Most previ-
ous related methods focus on optimizing lightweight models of
high-efficiency models, so not many methods select large-scale
models as baseline models. In this paper, we mainly compare
with OEM [20], SD [59] on ResNet-50/101 for ImageNet
classification. The comparison is shown in Fig.7. On ImageNet
dataset, ResNet-50 and ResNet-101 both have lowest error
rate. We further compare the improvement margin (error rate
decrease) with OEM and SD. The error rate decrease curve
reveals that EKD-FWSNet can improve large-scale baseline
models by largest margin.

d) Ensemble teacher comparison: Our proposed method
integrates ensemble learning strategy into knowledge distil-
lation training framework. Naturally, if the performance of
ensemble teacher is better, the main student is easier to become
better. In Tab.X, we compare the performance of ensemble
teacher with other ensemble knowledge distillation guided
methods [20], [22], [24], [65] to reveal the all-round superior-
ity of EKD-FWSNet. On CIFAR-10, EKD-FWSNet achieves
comparable results with KD-ONE, where the error rate is
a little (0.04%) higher. On CIFAR-100, compared to AFID,
EKD-FWSNet has little inferiority on classification result of

Fig. 7. Top-1 error rate and error rate decrease (%) of large-scale baseline
model comparison on ImageNet. All results are average values of three runs.
In addition, “SD” and “OEM” respectively indicate method of [59] and [20].

TABLE X
COMPARISON OF ENSEMBLE TEACHER PERFORMANCE USING ERROR

RATE (%). WE SELECT RESNET-32 AS BASELINE MODEL AND
RESPECTIVELY COMPARE THE “MAIN STUDENT”(RESNET-32:

BASELINE MODEL AFTER TEACHING) AND “ENSEMBLE
TEACHER”(RESNET-32-E: ENSEMBLE TEACHER) RESULTS

WITH KD-ONE [22], DCCL [24], OEM [20] AND
AFID [65]. THE BEST SCORE

IS HIGHLIGHTED IN BOLD

ResNet-32. However, the performance of ensemble teacher
between EKD-FWSNet and AFID is comparable. From Tab.X,
we find that EKD-FWSNet has high-quality ensemble teacher,
which guarantees the improvement of baseline model (Better
teacher can teach better student).

e) Discussion and Analysis with AFID and PCL:
AFID [65] and PCL [66] have close relation with our pro-
posed EKD-FWSNet. These three methods both introduce
ensemble teacher to facilitate the learning of baseline mod-
els in “logits-level” and “intermediate feature-level”. The
main difference between AFID and EKD-FWSNet is whether
uses weight-sharing blocks to construct the ensemble train-
ing network. Specifically, AFID directly employs one more
complete sub-network to construct a two-branch ensemble
network. EKD-FWSNet only uses one auxiliary classmate
branch formed with several layers to construct a multiple-
branch (more than two-branch) ensemble network. Compared
to AFID, EKD-FWSNet utilizes weight-sharing blocks and
obviously has less training memory and computation cost.

The differences between PCL and EKD-FWSNet can be
listed as follows. (1) PCL constructs multiple forward branches
by serving low-level layers as weight-sharing blocks and
directly increasing high-level layers. EKD-FWSNet is only
aided by one auxiliary classmate branch with several lay-
ers. When more forward branches are required, the training
memory of PCL will multiply while EKD-FWSNet will have
no extra memory cost. (2) Compared to EKD-FWSNet, PCL
adds peer collaborative distillation from a peer mean teacher
(a temporal mean model updated by Exponential Moving
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TABLE XI
TOP-1 ERROR RATE (%) COMPARISON ON CIFAR-100. ABLATION

EXPERIMENTS TO SEPARATELY SHOW THE EFFECTIVENESS OF EACH
KEY LOSS TERM ON EKD-FWSNET. “+” MEANS APPENDING.

“BL” MEANS INDIVIDUALLY TRAINED BASELINE MODEL.
THE BEST SCORE IS HIGHLIGHTED IN BOLD

Average) to student model. This design improves the perfor-
mance of baseline model, but it further introduces training
memory and computation cost. (3) Both these two methods
use augmentation techniques to increase the diversity of mul-
tiple predictions from different forward branches. However,
PCL and EKD-FWSNet respectively apply augmentation in
data-level and feature-level.

From Tab.VII, Tab.IX and Tab.X, we intuitively observe
that EKD-FWSNet performs much stronger on high-efficiency
baseline models (E.g., ResNet-18/34) optimization while
AFID and PCL show better performance on lightweight
baseline models (E.g., ResNet-32) optimization. Generally
speaking, EKD-FWSNet shows comparable optimization per-
formance compared to AFID and PCL. As for training cost
(training memory and computation cost), EKD-FWSNet shows
obvious superiority over AFID and PCL.

C. Ablation Study

1) Effectiveness of Each Key Loss Term of EKD-FWSNet:
To separately prove the effectiveness of each key loss terms
of EKD-FWSNet, we conduct experiments shown in Tab. XI.
When only applying cross-entropy loss (Lms, Lk

cm), the perfor-
mance baseline model will not improve. This is because opti-
mizing with auxiliary classmate branch using only hard-labels
cannot provide mature knowledge to baseline model. When
further adding KL distillation loss on posterior class proba-
bilities, the improvement is obvious. The reason is that the
ensemble teacher can provide easy-achieved mature global
knowledge for main student to mimic. When using ensemble
attention distillation on intermediate feature maps, the accu-
racy of baseline models can get improved by average 0.41%.
Although sometimes baseline models improve little, it still
works in most cases. Theoretically, [59] and [20] adopt
knowledge distillation strategy in intermediate feature maps by
directly using distillation loss functions among feature maps,
which are 3-dimension tensors. i.e., they construct tensor-
level high-dimension approximation, which will introduce
extra optimizing burden (Curse of Dimensionality). Moreover,
distillation loss functions increase with the increase of forward
branches. In this paper, EKD-FWSNet avoids the above prob-
lems. No matter how many forward branches are constructed

TABLE XII
EFFECTIVENESS OF DIFFERENT FEATURE AUGMENTATION BLOCKS ON

EKD-FWSNET. WE SET FIRST BRANCH POINT AFTER “LAYER1”.
THEREFORE, THE BRANCH NUMBER OF LIGHTWEIGHT
BASELINE MODELS AND HIGH-EFFICIENCY BASELINE

MODELS ARE RESPECTIVELY 3 AND 4. ALL
EXPERIMENTS ARE EVALUATED ON

CIAFR-100 WITH ERROR-RATE (%). THE
BEST SCORE IS HIGHLIGHTED IN BOLD

in architecture, we only apply matrix-level ensemble attention
distillation on 2-dimension attention maps with only one loss
functions, which can ease the optimization of baseline models.

2) Effectiveness of Different Feature Augmentation Blocks:
In this paper, we introduce online FA blocks to compensate
the diversity diffusion of each forward branch’s prediction
caused by deeper weight-sharing blocks. Here, we select
ResNet series as baseline models and conduct classification
experiments on CIFAR-100 to analyze FA blocks. Results in
Tab.XII shows that Dropout block performs better than SE
and CAM in most cases. If we do not apply FA blocks, the
performance of baseline models will largely decrease because
of diversity loss.

3) Layer-Wise Versus Inner-Block-Wise Branch Point Set-
ting: Recent notable baseline models always consist of several
layers. In most cases, output feature maps from different
layers have different resolution. In baseline models, layer
indicates convolutional blocks containing several units, e.g.
Layer1 of ResNet-34 has three basic block units and layer2
of EfficientNet-b0 has two MBConv block units (Tab.I).
In experiments, we mainly adopt layer-wise branch point
setting to construct EKD-FWSNet, which is shown in Fig.2
and diagram (a) of Fig.3. However, only setting branch points
between layers will limit the growing of forward branches.
To flexibly construct EKD-FWSNet, we apply inner-block-
wise branch point setting to construct more forward branches
by splitting layers on both main student branches and class-
mate branch and set more branch points (diagram (b) of Fig.3).

To compare the layer-wise and inner-block-wise setting,
we first select ResNet-18/34 as baseline models and construct
a six-forward-branch EKD-FWSNet (Fig.8). Then, we run
the classification experiments on CIFAR-100. Through the
comparison shown in Tab. XIII, we find the following
three points. (1) Six-forward-branch EKD-FWSNet has little
superiority compared to four-forward-branch EKD-FWSNet,
which means the optimizing profit can not continuously grow.
(2) Baseline models get improved mainly because they absorb
the sub-optimal generalized knowledge of “ensemble teacher”,
which is not an infinite knowledge. (3) We can not provide an
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Fig. 8. An architecture of six-forward-branch EKD-FWSNet. On main
branch and classmate branch of ResNet18/34, we both set five branch points,
where “bp3_ms/bp3_cm” and “bp5_ms/bp5_cm” are respectively set inside
“layer3/CM_layer3” and “layer4/CM_layer4” of main branch and classmate
branch. The routes of six forward branches are shown in this figure.

TABLE XIII
COMPARISON RESULTS BETWEEN FOUR-FORWARD-BRANCH LAYER-
WISE EKD-FWSNET AND SIX-FORWARD-BRANCH INNER-BLOCK-

WISE EKD-FWSNET. WE USE RESNET-18/34 AS BASELINE
MODEL AND EVALUATE ON CIFAR-100

optimal and fix branch number for every classification tasks,
so we need a flexible setting. The inner-block-wise branch
point setting can make EKD-FWSNet more flexible when
more forward branches are required. In summary, compared
to previous works [19], [20], EKD-FWSNet can flexibly
extend to an end-to-end ensemble network with lager number
of forward branches without depending on more trainable
parameters.

4) One Auxiliary Classmate Branch Versus More: As
shown in Fig.8, EKD-FWSNet only has one auxiliary class-
mate branch and one main student, which means we can
construct multi-forward-branch network without depending on
multi-classmate branches. This design decreases the training
computation and memory cost.

Previous methods [20], [22], [66] utilize multiple classmate
branches to construct ensemble networks. Here, we also design
a six-forward-branch EKD-FWSNet with two auxiliary class-
mate branches shown in Fig.9. We will compare this structure
with “one-auxiliary-classmate” EKD-FWSNet (Fig.8) in the
following points. (1) Compared to EKD-FWSNet shown in
Fig.8, this architecture obviously has more memory cost.
(2) With one more auxiliary classmate branch involved, less
inner-block-wise branch points will be involved. Compared
to “one-auxiliary-classmate” version, this architecture con-
structs same number of forward-branches without inserting
any inner-block-wise branch points. (3) When adding one

Fig. 9. An architecture of six-forward-branch EKD-FWSNet with two
auxiliary branches.

TABLE XIV
COMPARISON RESULTS BETWEEN SIX-FORWARD-BRANCH
“ONE-AUXILIARY-CLASSMATE” EKD-FWSNET AND “TWO-

AUXILIARY-CLASSMATE” EKD-FWSNET. WE USE
RESNET-18/34 AS BASELINE MODEL

AND EVALUATE ON CIFAR-100

more auxiliary classmate branch, the sharing rate of deeper
layers decrease. E.g., In this architecture, “CM1_l4_2” exists
in 2 forward branches. In “one-auxiliary-classmate” EKD-
FWSNet, “◦CM1_l4_2” exists in 5 forward branches.

From the comparison results of Tab.XIV, we observe
that “two-auxiliary-classmate” EKD-FWSNet gains minor
improvement with more memory and computation cost. Essen-
tially, high overlapping rate among forward branches will harm
the diversity and weaken the ensemble teacher. Essentially,
multiple auxiliary classmate branches make trade-off between
diversity improvement and computation resource costing.

D. Visualization and Analysis

1) Hyper-Parameter Adjusting Principle: In this paper,
we propose simple yet efficient training framework. Only
two scalars are served as hyper-parameters, where w and
α are respectively applied to adjust the proportions of KL
distillation loss and MSE ensemble-attention loss. In different
cases, we adopt different hyper-parameter adjusting strategies
to make training framework optimize well. Tab. XV shows
the configuration of these two scalars in different cases. The
principle of adjusting the hyper-parameter is listed as follows.
(1) We select large value of w, because we find the KL loss
is far less than MSE and cross-entropy loss. This principle
is also a experimental hyper-parameter adjusting experience.
(2) We tend to use higher value of w for more complex
task (CIFAR-100, tiny-ImageNet). Because the pattern of class
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TABLE XV
THE CONFIGURATION OF HYPER-PARAMETER ON DIFFERENT DATASETS.

WE DENOTE THE TWO HYPER-PARAMETER IN FORMAT OF (w, α)

TABLE XVI
THE EVALUATION ON HYPER-PARAMETER (w, α) SENSITIVITY.
HERE, WE SELECT RESNET-32 (LIGHTWEIGHT), RESNET-18
(HIGH-EFFICIENCY) AND RESNET-50 (LARGE-SCALE) AND

EVALUATE ON CIFAR-100 DATASET WITH ERROR
RATE (%). “BL” MEANS INDIVIDUALLY

TRAINED BASELINE MODEL

probabilities is more complex when the number of categories
is large. (3) We set smaller α when applying MSE loss on
large-scale feature maps to avoid abnormal values caused by
large loss. (4) When more branches are added, we decrease
the factor of cross-entropy loss to avoid exploding gradients.
Fortunately, it rarely happens in our proposed models. (5) For
ResNet [4] series and EfficientNet [31] series, we use a fix
set of hyper-parameter shown in Tab.XV, which shows the
robustness and less training sensitivity of EKD-FWSNet.

Followed the above-mentioned principles, we conduct an
experiment to test the sensitivity of hyper-parameters (w, α).
As shown in Tab.XVI, we will make the following analysis.
(1) The ratio of KL loss term (w) cannot be too high or too
low, because learning from hard-labels and soft-labels in a
balanced manner can maximize the optimization effect. (2)
Similarly, the ratio of MSE loss term (α) also needs to be set
properly. Particularly when α is much larger, the harm will
rapidly increase. This result also verifies our proposed third
principle. (3) As shown in Tab.XI, KL loss term contributes
more than MSE loss term. Therefore, when using much lower
w, classification results will become close to baseline results.

2) Comparison and Analysis of Computation Cost in Train-
ing Phase: As Mentioned in main paper, some recent typical
works [20], [22], [23], [24] show the power of “student-
classmate” paradigm (Fig.1 top-right). However, with the
increase of classmate branches, the training burden increase
rapidly, which will complicate training process. Comparing
with those methods, our proposed method is more compact and

TABLE XVII
COMPARISON OF COMPUTATION COST IN TRAINING PHASE.

PARAMETERS AND FLOPS ARE CALCULATED DURING TRAINING
FORWARD PROCESS WITH STANDARD INPUT SIZE 224×224.
WE USE RESNET-32 AS BASELINE MODEL AND COMPARE

THE CLASSIFICATION PERFORMANCE ON CIFAR-100.
ADDITIONALLY, WE REIMPLEMENT THE INFERENCE

PHASE OF OEM, DML, DCCL AND KD-ONE TO
CALCULATE THE COMPUTATION COST. THE BEST

SCORE IS HIGHLIGHTED IN BOLD

flexible. To intuitively show the computation cost in training
phase, we compare the training FLOPs in Tab. XVII.

To fairly compare the computation cost of EKD-FWSNet
with previous methods, we first calculate the training param-
eters and FLOPs during training phase of individual baseline
model. Then we carefully reimplement the inference phase
of previous models [20], [22], [23] and calculate their training
cost. As shown in Tab. XVII, DML [23] and DCCL [24] uses a
two-branch (two ResNet-32) structure. Therefore, the training
parameters and the training FLOPs are approximately the
two times of baseline model. If more branches are involved,
parameters and FLOPs will multiply. OEM [20] combines
several branches with different size. However, each branch
is fed with high-resolution feature maps, which also costs
a lot both on parameters and FLOPs. KD-ONE [22] first
utilizes low-level layers as weight-sharing blocks and then
constructs multiple branches using separate high-level layers.
Comparing with DML and OEM, KD-ONE largely lowers the
training FLOPs.

Compared to DML, DCCL and OEM, EKD-FWSNet can
train a baseline model better with less training parameters and
FLOPs. Compared to three-branch KD-ONE, EKD-FWSNet
has less parameters but more FLOPs. Then, we increase
forward branches and make further comparison. When adding
more branches, KD-ONE will use more high-level layers.
Since high-level layers contain large group of parameters,
the training parameters and FLOPs of six-branch KD-ONE
rapidly increase, especially training parameters. To construct
a six-branch EKD-FWSNet, we adopt block-wise branch
point setting strategy (Fig. 8). From Tab.XVII, it is clear
that EKD-FWSNet has no training parameters increase. From
three-branch to six-branch structure, EKD-FWSNet has less
training FLOPs increase (2.73G vs 3.31G).

In summary, one superiority of EKD-FWSNet is low train-
ing parameter cost. Another superiority of EKD-FWSNet is
flexibility. when more branches are constructed, no extra
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Fig. 10. Visualization results of logits on CIFAR-10 with T-SNE. We select
ResNet-20 as baseline model. “EKD-ensemble” indicates the ensemble teacher
logits of EKD-FWSNet. Different colors indicate different categories. here,
we select CIFAR-10 dataset for visualization, so there is 10 different colors.

Fig. 11. The attention map visualization uses Grad-CAM method. We use
ResNet-18 as baseline model and select images from ImageNet validation
dataset.

training parameters are involved and the computation cost
increases in a slow way.

3) Class Probability Visualization With T-SNE: To show the
cluster pattern of predictions, we apply T-SNE [78] on the final
logits of EKD-FWSNet. In Fig. 10, we compare the perfor-
mance through the scatter plots generated by baseline model
training individually and training in EKD-FWSNet. In scatter
plots of EKD-FWSNet, the cluster of each class is tighter
(smaller intra-class distance) and distance between clusters are
larger (larger inter-class distance). Specifically, on the scatter
plot of baseline model, it is clear that different points of some
categories mix together (region with red mark). By contrast,
the scatter plot of EKD-FWSNet and ensemble model are
better. When comparing EKD-FWSNet with ensemble teacher,
there is no significant difference in the T-SNE. The reason
is that EKD-FWSNet directly gets knowledge from ensemble
teacher, which can be regarded as a mimicking process. As a
whole, Fig. 10 proves the interpretability of EKD-FWSNet.

4) Attention Region Visualization With Grad-CAM: To
show the performance on feature representation of our pro-
posed EKD-FWSNet, we adopt the Grad-CAM [79] to visu-
alize attention region of each layer’s feature map. As shown
in Fig. 11, baseline models training with EKD-FWSNet can
obtain better attention on different layers. Specifically, EKD-
FWSNet training networks can generate less-noise low-level
feature maps and richer-information high-level feature maps.

V. CONCLUSION

In this paper, we propose a novel training framework,
EKD-FWSNet to explore the representation power of baseline
models. Baseline models optimizing in EKD-FWSNet perform
much better guided by knowledge distillation on posterior
class probabilities and intermediate attention feature maps.
To ease training burden, we mainly use weight-sharing blocks
and concise distillation loss. We also make further mathe-
matical analysis to show how we exploit the representation
potential of weight-sharing blocks. Extensive experiments on
lightweight, high-efficiency and large-scale models prove that
EKD-FWSNet is more robust and competitive than previous
knowledge distillation guided ensemble training framework.
Visualization and analysis also prove that EKD-FWSNet is
reasonable and interpretable. All in all, our proposed self-
learned EKD-FWSNet can enhance baseline models in an
easy-optimized manner. After optimizing, baseline models
become better without using more trainable parameters and
extra complex modules. In the future, we will consider
designing a more efficient and flexible ensemble training
framework, which will not introduce any extra auxiliary
branches.

APPENDIX
COMPARISON WITH DYNAMIC-ROUTING

BASED DYNAMIC NEURAL NETWORK

In real applications, different computation-resource devices
need different models with different size with high-accuracy.
Recent elegant dynamic-routing based DNN integrates differ-
ent sub-models. Instead of training individual models with
different configurations, dynamic-routing based DNN only
trains a large “SuperNet” to dynamically switch different
routes at runtime using one set of weight-sharing blocks.
To improve the generalization of sub-nets, knowledge distilla-
tion training mechanism is adopted to transfer knowledge from
the large sub-models to multiple small sub-models. Among
recent notable dynamic-routing based DNN, BYOT [80] is
highly related to our work. The relation between BYOT and
EKD-FWSNet is that we both construct multiple forward
branches for multiple predictions and adopt knowledge dis-
tillation strategy with no dependency on cumbersome teacher
model. The difference can be summarized as follows. (1) Two
methods have different goals. BYOT mainly aims to conduct
adaptive accuracy-efficiency trade-offs on different resource-
limited edge devices, i.e. BYOT is designed to meet the
inference requirement of devices with different computation-
constraints. Compared to BYOT, EKD-FWSNet is a training
framework, which mainly aims to make baseline models
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TABLE XVIII
COMPARISON AND ANALYSIS WITH BYOT [80]. WE FOLLOW BYOT AND

SELECT RESNET-18 AS BASELINE MODEL TO COMPARE THE
CLASSIFICATION PERFORMANCE ON CIFAR-100. HERE,
“ERR-RATE-E” MEANS THE ERROR RATE OF ENSEMBLE

PREDICTION. THE BEST SCORE
IS HIGHLIGHTED IN BOLD

TABLE XIX
COMPARISON AND ANALYSIS WITH BYOT [80]. WE FOLLOW BYOT

AND SELECT RESNET-18 AS BASELINE MODEL TO COMPARE THE
CLASSIFICATION PERFORMANCE ON IMAGENET [81]. HERE,

“ERR-RATE-E” MEANS THE ERROR RATE OF ENSEMBLE
PREDICTION. THE BEST SCORE IS HIGHLIGHTED IN BOLD

stronger. Different-scale baseline models can insert into EKD-
FWSNet and get improved without depending on teacher
models. (2) Two methods have different structures. BYOT pro-
poses a single neural network which contains multiple sub-nets
with different depths. During inference, it can switch different
sub-nets according to different computation demands. EKD-
FWSNet proposes one auxiliary classmate branch to generate
multiple forward branches. During inference, classmate branch
will be removed and only leave main student branch. (3) Two
methods adopt different distillation mechanisms. In BYOT,
full-net are served as “teacher” to “teach” each sub-nets. In
EKD-FWSNet, multiple predictions are integrated as “ensem-
ble teacher” to only “teach” main student (baseline model).

In this appendix, we conduct classification experiments
to compare our method with BYOT. On ResNet-18, BYOT
uses early-exiting strategy to construct four forward branches,
where the large sub-net (full-net: “classifier4/4”) contains
the complete baseline model. In Tab.XVIII, we compare
the baseline model training in EKD-FWSNet with the full-
net of BYOT. We also compare the ensemble teacher of
four-forward-branch EKD-FWSNet with the ensemble pre-
dictions of four sub-nets of BYOT. The results show that
baseline model (ResNet-18) optimizing in EKD-FWSNet
achieves lower error rate (21.36% vs 20.49%) and larger gain
(3.22% vs 1.55%). Furthermore, we conduct comparison
experiments on large-scale dataset, ImageNet [81]. From
Tab.XIX, we analyze in the following two points. (1) In terms
of baseline model optimization, EKD-FWSNet performs better
than BYOT. Obviously, EKD-FWSNet achieves lower error
rate on final prediction and ensemble prediction compared to

BYOT. In addition, EKD-FWSNet can achieve larger gain.
(2) On ImageNet, some sub-nets (E.g. “classifier1/4”, “classi-
fier2/4”) of BYOT have poor performance with small group
of trainable parameters because the classification task is too
complex. Therefore, the ensemble teacher performs worse than
baseline model. Compared to BYOT, forward branches of
EKD-FWSNet all have same amount of trainable parameters,
so each forward branch can generate “good and diverse”
prediction leading to a “better ensemble teacher”. Naturally, in
knowledge distillation ensemble training framework, a better
ensemble teacher really means a lot.

As a typical dynamic neural network, the huge superiority
of BYOT is that it can flexibly provide multiple sub-nets
with different inference computation costs. Moreover, BYOT
does not introduce any auxiliary modules. Even though EKD-
FWSNet utilizes weight-sharing blocks to decrease the amount
of auxiliary modules, it still increases the training cost com-
pared to BYOT. All in all, on optimizing baseline model, EKD-
FWSNet is better. On flexibly optimizing different-scale sub-
nets at the same time with one training framework, BYOT is
better.
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