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Recently, the problem of detecting unknown and arbitrary sparse signals has attracted much attention from researchers in various
fields. However, there remains a peck of difficulties and challenges as the key information is only contained in a small fraction
of the signal and due to the absence of prior information. In this paper, we consider a more general and practical scenario of
multiple observations with no prior information except for the sparsity of the signal. A new detection scheme referred to as the
likelihood ratio test with sparse estimation (LRT-SE) is presented.Under theNeyman-Pearson testing framework, LRT-SE estimates
the unknown signal by employing the 𝑙1-minimization technique from compressive sensing theory. The detection performance
of LRT-SE is preliminarily analyzed in terms of error probabilities in finite size and Chernoff consistency in high dimensional
condition.The error exponent is introduced to describe the decay rate of the error probability as observations number grows. Finally,
these properties of LRT-SE are demonstrated based on the experimental results of synthetic sparse signals and sparse signals from
real satellite telemetry data. It could be concluded that the proposed detection scheme performs very close to the optimal detector.

1. Introduction

Nowadays, with network and information boom, there is
massive data influx in every walk of life including military
detection, industrial monitoring, IT industry, entertainment
industry, and many other fields. These big data of high-
volume, high-velocity, and high-variety information demand
innovative forms of information processing for enhanced
insight, decision-making, and signal detection [1]. However,
it is increasingly difficult to detect and extract the truly useful
portion from massive data.

Plenty of state-of-the-art methods have been put forward
to detect targets and signals for big data, for example, utilizing
artificial neural networks or deep neural networks to do fault
diagnosis with massive data [2, 3]. As the research on the
sparsity of signal further develops, it is also a cutting-edge
method to employ sparse representation to characterize the

massive data because these data are always full of redundant
information. A signal could be regarded as a sparse signal
if the coefficient of the vector itself, or under certain basis,
contains only a few nonzero components [4].

In this paper, the sparse signal detection problemwhich is
to determine whether a sparse signal exists in a small fraction
of the background noise has been discussed. This problem
has attracted growing attention as sparse signals are usually
closely interrelated to unpredictable changes, abnormality,
and danger, for example, fault detection and diagnosis of
satellite navigation, network anomaly detection, industrial
process supervision, and prediction of natural disasters. It is
of great significance to avoid serious consequences induced
by these indiscoverable early warnings.

However, there are many challenges to distinguish and
separate these sparse signals from noise because useful
information takes up only small part of the entries in the
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signal. In addition, prior information is almost unavailable
due to the diversity and indeterminism of the abnormal
sparse signals.

It is a common way to formulate the detection problem
into composite hypothesis testing. A classical approach to
detect signals with unknown parameter is the generalized
likelihood ratio test (GLRT) [5]. The basic idea of GLRT
is to replace the unknown parameter with its maximum
likelihood (ML) estimates and then continue employing
likelihood ratio test (LRT). The test has the form Λ 𝑔(x) =
max𝜃1∈Θ1𝑝𝑟|𝜃1(x | 𝜃1)/max𝜃0∈Θ0𝑝𝑟|𝜃0(x | 𝜃0) 𝐻1≷

𝐻0

𝛾,
where x is the observations vector and 𝜃1 and 𝜃0 are the
parameter vectors to be determined. Frequently, we work
with the logarithm ln𝑝𝑟|𝜃𝑖(x | 𝜃𝑖). If the maximum of the
log likelihood function is interior to the range of 𝜃𝑖 and
ln𝑝𝑟|𝜃𝑖(x | 𝜃𝑖) has a continuous first derivative, then a
necessary condition on the ML estimation is obtained by
differentiating ln𝑝𝑟|𝜃𝑖(x | 𝜃𝑖) with respect to 𝜃𝑖. Therefore,
it is fairly important to divide the parameter space into two
partitions, which has been proved to be a crucial factor
of the asymptotic optimality of GLRT [6]. Unfortunately,
the problem in this paper could hardly meet the necessary
condition of GLRT. In addition, it is proved by Hartigan [7]
and Bickel [8] that the usual GLRT has nonstandard behavior
within the detection boundary of LRT, as themaximized ratio
tends to ∞ under 𝐻0. Moreover, it is time-consuming and
almost infeasible to calculate GLRTwhen the signal is of high
dimension.

Inspired by the previous study, a novel scheme of detect-
ing unknown and arbitrary signals against noise under the
name of LRT-SE is proposed in this paper. LRT-SE inte-
grates the hypothesis test under Neyman-Pearson framework
and 𝑙1-minimization technique from CS theory. There exist
notable differences between this new method and GLRT
owing to the fact that the newmethod estimates the unknown
sparse signal utilizing the 𝑙1-minimization which takes full
advantage of the signal’s sparsity. Preliminary analyses are
provided to characterize the performance of LRT-SE in both
finite and high dimension. It could be revealed that the
prospective near-optimal performance is achievable by the
experiment results of both synthetic sparse signals and sparse
satellite telemetry data.

The rest of this paper is organized as follows. Section 2
provides a review of some related work. Section 3 introduces
the background on Neyman-Pearson test and CS theory.
In Section 4, the application scenario and the formulation
of the problem are firstly introduced. The scheme of LRT-
SE is then presented with the corresponding flow chart.
In addition, theoretical analyses are discussed, preliminarily
characterizing the properties of LRT-SE. These properties
have been verified by the results in Section 5 based on the
experiments on synthetic signals and satellite telemetry data.
Section 6 discusses the results in detail. Finally, Section 7
concludes the full text and points out the research direction
in the future.

2. Related Work

Detection of unknown sparse signal mixed with noise is a
long-standing problem of composite hypothesis testing that
arises inmany scientific applications such as signal processing
[9], wireless sensor networks [10], and remote sensing sys-
tems. A variety ofmethods and schemes have been developed
to solve this universal yet intricate problem.

Except for the classical GLRT method, most methods so
far concentrate on making assumptions of prior information
about the signals of interest to alleviate the dilemma. On
this premise, some researchers turned over to seek test statis-
tics of the signal’s sparsity adopting the recently prevalent
compressive sensing (CS) framework. For instance, Duarte
et al. estimated the relevant sufficient statistics for the test
by directly extracting them from a small number of random
projections without ever reconstructing the signal. They
proved that the CS framework is information scalable to
a much wider range of statistical inference tasks [11]. In
the same year, Davenport et al. further demonstrated how
to solve a variety of signal detection problems including
sparse signal detection and estimation problems and gave the
measurements without ever reconstructing the signals them-
selves [12]. Another paper written by Haupt and Nowak
proposed a detector that collects a set of universal samples
obtained without prior knowledge of the signal structure and
examined the performance of CS for the problem of signal
detection. However, some auxiliary channels are required to
provide the so-called “future knowledge” [13]. Later in 2008,
Wang et al. introduced a set of detectors called subspace
compressive detectors aiming at solving the problem that
the compressive measurements are not efficient at gathering
signal energy [14]. In a recent article, the problem of sparse
signal detection based on partial support set estimation with
compressive measurements in a distributed network was
discussed by Wimalajeewa and Varshney. The basic idea of
this article resembled the work of [11] but intensively studied
how to determine the minimum fraction of the support to be
estimated so that the detection would perform optimally [15].

Nonetheless, it is less universal to impose on the afore-
mentioned schemes because they more or less required
prior knowledge about the sparse signals as some schemes
exploited greedy algorithms or had other auxiliary conditions
to improve performance.

On the other hand, the detection boundary in terms of
sparsity and signal strength is another research priority. The
sum of two types of error probabilities tends to zero or one
depending on whether the mean of sparse signal, denoted by𝜇, exceeds this detection boundary. The sparsity exponent 𝛽
is defined as the proportion of zero components to the signal
dimension 𝑛, while the smallest possible signal strength 𝑟 is
defined as a function of the sparsity exponent, denoted by

𝑟∗ (𝛽) = {{{{{{{
𝛽 − 12 12 < 𝛽 ≤ 34
(1 − √1 − 𝛽)2 34 < 𝛽 < 1.

(1)

In [16], if the mean of signal obeys 𝜇 = √2𝑟 log 𝑛,
it will show that the likelihood ratio test could reach
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asymptotic power when 𝑟 > 𝑟∗(𝛽), while conversely if𝑟 < 𝑟∗(𝛽) the test is asymptotically indistinguishable as
the total error probabilities would converge to one. Based
on this conclusion, Donoho and Jin demonstrated that this
boundary still stands for the Higher Criticism which is also
called second-level significance testing [17]. Afterward, the
authors of [16] extended the existing detection boundary
phenomenon to high dimensional linear regression and fur-
ther established the boundaries under the condition that the
variance of noise is unknown [18]. Moreover, [19] considered
the different detection boundaries among the analysis of
variance (ANOVA), the Max test, and the Higher Criticism
when detecting sparse alternatives. It proved that ANOVA
could obtain optimal performance under moderate levels of
sparsity, that is, 𝛽 ∈ [0, 1/2], requiring 𝜇 to grow as a power
of 𝑛. On the contrary, reliable detection is possible when
employing the Max test only if the sparsity is very strong,
namely, 𝛽 ∈ [3/4, 1], requiring 𝜇 to be on the order of√log 𝑛,
while the detection threshold for Higher Criticism remains
unchanged. Inspired by the former papers, the authors of
[20] discussed the detection problem under a general sparse
mixture model and derived an explicit expression for the
detection boundary undermild regularity conditions. To sum
up, these papers work out the problem of when the sparse
signal is detectable.

In light of these prior works and obeying the detection
boundary, we are aiming to put forward a more efficient and
practical detection scheme of unknown sparse signal mixture
model. Detailed theoretical analyses about the properties of
the new scheme are also introduced in this paper. Ultimately,
we give out plentiful experiment results generated by detect-
ing synthetic sparse signals and telemetry data.

3. Theoretical Background

The detection problem discussed in this paper mainly
employs hypothesis test as framework. The null hypothesis is
assumed to be white Gaussian noise, while the alternative
hypothesis is an unknown sparse signal with no prior infor-
mation except for its sparsity. As is well known, under like-
lihood ratio test framework, N-P criterion could achieve the
largest detection probability among various decision criteria.
Furthermore, the sparse estimation technique from Com-
pressive Sampling is incorporated into the framework to
estimate the unknown parameter of likelihood function.

3.1. Neyman-Pearson Test. Statistical hypothesis testing is a
crucial method to detect and classify signals. Based on the
statistical theory, there exist a variety of decision criteria
for hypothesis testing, for example, the Bayes Criterion,
minimum total error probability criterion, Neyman-Pearson
criterion, and Maximin criterion. These criteria have been
widely applied to radar signal detection, multisensor nonde-
structive testing, robot control, medical diagnosis, and other
regions.

Instead of calculating the risk as Bayes Criterion requires,
Neyman and Pearson [21] were inclined to work out a
criterion making 𝑃𝐹 (false alarm probability) as small as

possible while making 𝑃𝐷 (detection probability) as large
as possible. Afterward, the corresponding lemma which
suggests the most powerful testing criterion was put forward
referring to as Neyman-Pearson lemma. The test based on
this lemma perfectly matches the situation in this paper
when no prior information is available and the hypothesis is
composite. In addition, the lemma tells us exactly how to
find the appropriate threshold separating acceptance and
rejection regions for the test [22].

Neyman-Pearson Lemma [22]. Let Θ = Θ0 ∪ Θ1 be a disjoint
covering of the parameter space. Let 𝐻0 and 𝐻1 denote the
hypothesis that 𝜃 ∈ Θ0 and 𝜃 ∈ Θ1, respectively.

Assume that 𝑋 is a vector of observations from observa-
tion space with distribution 𝐹𝜃(𝑋). Constrain 𝑃𝐹 = 𝛼 ≤ 𝛼
and then the likelihood ratio test

𝑙 (𝑥) = 𝑓𝜃1 (𝑥)𝑓𝜃0 (𝑥)
𝐻1≷
𝐻0

𝜂 (2)

is proved to be the most powerful test where the threshold 𝜂
is decided by

𝑃𝐹 = ∫∞
𝜂
𝑓𝜃0 (𝑙) d𝑙 = 𝛼. (3)

The receiver operating characteristic (ROC) figure plot-
ting 𝑃𝐷 versus 𝑃𝐹 is commonly adopted to describe the
performance of the test as a function of the parameter of
interest. The larger the area under the ROC curves, the better
the performance the test possesses.

3.2. 𝑙1-Minimization of Compressed Sensing. Compressed
Sensing, firstly proposed by Donoho [23], has attracted
widespread attention from signal processing, image process-
ing, computer vision, and pattern recognition fields [24]. As a
cutting-edge technique, the critical observation of CS is that,
given the prior knowledge of a signal’s sparsity, it is possible
to efficiently and accurately reconstruct the full-length signal
from the small amount of collected data with sampling rate
far below Nyquist rate.

As one of the hottest research spots of CS, the recovery
algorithms put forward so far could be roughly divided into
three categories [25]: greedy pursuits (matching pursuit),
basis pursuits (or 𝑙1-minimization), and combinatorial algo-
rithms. Each type of algorithm has its merits and applicable
scenarios. 𝑙1-minimization algorithms succeed with the least
measurements and dispensing of prior information at the
expense of relatively heavy computational burden. Matching
pursuit shows an advantage in computation speed yet it is not
the global optimal solution. For combinatorial algorithms,
it requires a large number of unusual samples that may not
be easily acquired [25]. In reality, strong background noise
always comes along with the signal. Robust recovery could be
achieved by the 𝑙1-error version of basis pursuit even when
SNR is fairly low. However, greedy pursuits may perform
estimation successfully only if all nonzero components of the
signal are somewhat larger than the noise level [26].𝑙1-minimization is employed in this paper as it best fits
the problem in this paper and could provide the relatively
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accurate estimation value of the signal. The use of 𝑙1 norm as
a sparsity-promoting function dates back to several decades
because minimizing subject to linear equality constraints
can be easily transformed to a linear program which could
be developed using more efficient solution algorithms [27].
Then, we may first formulate a sensing problem and then
introduce 𝑙1-minimization.

A signal x ∈ R𝑛 can be sparsely represented by a linear
combination of 𝑆 vectors fromΨ. Denote 𝑆-sparse vector s ={s1, s2, . . . , s𝑛} to express the coefficients of x under Ψ. Then,
one has sample x with a matrix Φ ∈ R𝑚×𝑛, 𝑚 ≪ 𝑛, where
rows ofΦ are incoherent with columns ofΨ. Eventually, it is
easy to obtain an incoherent observation as

y = Φx = ΦΨs = As, y ∈ R𝑚, (4)

where A is defined as the measurement matrix.
After getting the sampled data y, recovering x from (4)

is an underdetermined linear problem because 𝑚 ≪ 𝑛. It
is nearly impossible to determine a definite unique solution
directly. 𝑙0-minimization method which exhausts all sparse
subsets is also an N-P hard problem and is impractical [28].
Innovatively, Chen et al. put forward an algorithm called basis
pursuit (or 𝑙1-minimization) that selects 𝑙1-norm instead of 𝑙0-
norm to alleviate the dilemma [29].

𝑙1-Minimization. One has

s# = argmin ‖s‖1
s.t Φx = As = y. (5)

In the case that

𝑚 ≥ 𝐶 ⋅ 𝑆 ⋅ log(𝑛𝑆) , (6)

for some positive constant 𝐶, the solution to the former
equation could be exact with overwhelming probability.

In 2005, Candès et al. further demonstrated that, under
restricted isometry property (RIP), 𝑙0-norm and 𝑙1-norm
optimization have the same and exact solutions [30].

Restricted Isometry Property (RIP) [30]. Let A𝑇, 𝑇 ⊂{1, 2, . . . , 𝑛}, be the𝑚× |𝑇| submatrix generated by randomly
extracting 𝑇 columns out of matrix A. Then, define the 𝑆-
restricted isometry constant 𝛿𝑆 of A as the smallest quantity
satisfying the following inequality:

(1 − 𝛿𝑆) ‖x‖22 ≤ A𝑇x22 ≤ (1 + 𝛿𝑆) ‖x‖22 , (7)

for all subsets 𝑇 with |𝑇| ≤ 𝑆 and all 𝑆-sparse vectors x. We
may loosely say that a matrix A obeys the RIP of order 𝑆 if 𝛿𝑆
is not too close to one. As previously described, an approach
to generate a matrix A with the RIP of high order is to use
random matrices such as random Gaussian matrix [31].

Accordingly, there exists the denoising form of 𝑙1-
minimization. Suppose there is an additive noise n ∈ R𝑚

Sparse event
Sensor node

Figure 1: Multiple-observation scenario.

contaminated observation y = As + n; the error version of𝑙1-minimization becomes as follows:

Basis Pursuit Denoising (BPDN) [29] (Also Known as Lasso).
This is represented as follows:

s# = argmin ‖s‖1
s.t As − y2 ≤ 𝜀, (8)

where 𝜀 is the size of n.
4. LRT-SE Algorithm

As has been stated in the preceding sections, the problem
in this paper is more general and practical, for no prior
information about the signal is assumed apart from its
sparsity. Applying the discussed background theories, the
general strategy of LRT-SE is the so-called joint estimation
anddetection technique, which estimates the parameter value
of likelihood function that is the sparse signal by utilizing𝑙1-minimization. It is important to declare that we are more
interested in making a decision rather than estimating the
exact value of the sparse signal. In addition, we consider
a multiple-observation scenario here in terms of multiple
sensors or a receiver receiving signals for multiple times.
Consequently, we give an overall judgment of whether the
sequence of observations contains sparse signals or only
noise.

4.1. Problem Model Setup. We considered a scenario where a
total of 𝑡 sensors are employed as shown in Figure 1 or a
receiver is receiving signals for 𝑡 times in a system, mon-
itoring an event which could be described as a signal s.
Nevertheless, this signal is 𝑆-sparse in time domain which
means apparent impulses only take place at 𝑆 certain points
while in other times the signal remains zero. Meanwhile, our
cognition about the signal is limited to its sparsity. The
occurrence time and the amplitude of each impulse can take
any real numberwithin range.Moreover, the detection suffers
from white Gaussian noise which is a harmful effect for
monitoring.Thereby, the problem addressed could be formu-
lated as a binary composite hypothesis test.
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𝐬# = argmin ‖𝐬‖1
f1(x t; s#)
f0(x t)

> 𝜂t

x t = (x1, x2, . . . , x t)

s.t. 
2 ≤ 𝜀As − y

Figure 2: The structure of LRT-SE.

Let (x0, x1, . . . , x𝑡) (𝑡 ≥ 1) be a sequence of i.i.d.
observations from 𝑡 sensors measuring the event. According
to the description of the problem, the binary hypothesis could
be formulated as follows:

𝐻0 : x𝑖 = n

𝐻1 : x𝑖 = s + n, (9)

where x𝑖, s,n ∈ R𝑛. s is an unknown 𝑆-sparse signal with‖s‖0 ≤ 𝑆, and the noise n is assumed to be Gaussian white
noise n ∼ 𝑁(0, 𝜎2In). Therefore, the distributions of the two
hypotheses obey

𝐻0 : x𝑖 i.i.d∼ 𝑁(0, 𝜎2In) 0 ≤ 𝑖 ≤ 1
𝐻1 : x𝑖 i.i.d∼ 𝑁(s, 𝜎2In) 0 ≤ 𝑖 ≤ 1. (10)

Next, a novel scheme under the name LRT-SE is put
forward to solve the problem.

4.2. Scheme of LRT-SE. Based on the problem we set above,
it is obvious that all tests could never be better than a simple
hypothesis test in which the receiver first measures s perfectly
and then designs the optimal likelihood ratio test. However,
there exists no uniformly most powerful (UMP) test as the
likelihood ratio test for every possible vector of s cannot be
completely defined without knowledge of s.

A reasonable approach we propose here is to estimate
s assuming that 𝐻1 was true by applying 𝑙1-minimization
and then substitute the estimated signal into the likelihood
function as if it was the real signal.

LRT-SE works as follows:
(1) For 𝑖 = 0, estimate s from x0 assuming that 𝐻1 was

true. Denote the estimate s# = s#(x0) by employing
the 𝑙1-minimization algorithm in accord with (7):

s# = argmin ‖s‖1
s.t As − Ax0

2 ≤ 𝜀, (11)

where 𝜀 is the size of noise, ‖𝑛‖2 ≤ 𝜀.
(2) For 𝑖 = 1, 2, . . . , 𝑡 (𝑡 ≥ 1), the likelihood functions are

calculated as

𝑓0 (x𝑖) = 𝑛∏
𝑗=1

1√2𝜋𝜎2 exp(−
𝑥𝑖𝑗22𝜎2) for 𝐻0,

𝑓1 (x𝑖; s#) = 𝑛∏
𝑗=1

1√2𝜋𝜎2 exp(−
(𝑥𝑖𝑗 − s#𝑗)22𝜎2 )

for 𝐻1,
(12)

where s#𝑗 is the 𝑗th entry of s# and 𝑥𝑖𝑗 is the 𝑗th entry of x𝑖.

(3) The likelihood ratio for x𝑡 = (x1, x2, . . . , x𝑡) is
𝑇 (x𝑡) = 𝑓1 (x𝑡; s#)𝑓0 (x𝑡) . (13)

(4) Set up a reasonable test level𝛼 (0 < 𝛼 < 1) and choose
the matching threshold 𝜂𝑡 according to N-P lemma
(3).

(5) Ultimately, the detector of hypotheses testing is

𝜑 (𝑥𝑡; 𝜂) = {{{
1, 𝑇 (𝑥𝑡) > 𝜂𝑡0, 𝑇 (𝑥𝑡) < 𝜂𝑡. (14)

The structure of the scheme is displayed in Figure 2.
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4.3. Sparse Estimation Accuracy. Different from ML estima-
tion which lacks specific analyses on estimation accuracy,
researchers have already reached some conclusions about the
reconstruction performance of 𝑙1-minimization. On the basis
of the aforementioned principle in theoretical background, if
the measurement matrix A obeys RIP (7) and the vector 𝑆 is
sufficiently sparse, thenTheorem 1 describes the relationship
between the level of noise perturbing the measurements and
the accuracy of the sparse estimation.

Theorem 1 (see [30]). Let 𝑆 be such that 𝛿3𝑆 + 3𝛿4𝑆 < 2.
Then, for any signal s supported on 𝑇 with |𝑇| ≤ 𝑆 and any
perturbation e = An with ‖e‖2 ≤ 𝜀, the solution s# to (8) obeys

s# − s2 ≤ 𝐶𝑆 ⋅ 𝜀, (15)

where the positive constant 𝐶𝑆 only depends on 𝛿4𝑆, for
example, typically 𝐶𝑆 ≈ 8.82 for 𝛿4𝑆 = 1/5.

Later on, the Coherence-Based Guarantee for BPDN has
been found by Ben-Haim et al. under the assumption of
stochastic noise [26] as Theorem 2 describes.

Theorem2 (see [26]). Suppose thatn ∼ 𝑁(0, 𝜎2I) is a random
noise vector. With overwhelming probability, the solution s# to
(8) is unique and the following inequality holds:

s# − s22 ≤ (√3 + 3√2 (1 + 𝛼) log (𝑛 − 𝑆))2 𝑆𝜎2, (16)

for some fairly small 𝛼 > 0.
This theorem presents a stronger performance guarantee

because of the assumption of random noise and the character-
istic of the estimator behavior for typical noise values.

Utilizing the result from Theorem 1, we proposed a
corollary which states the upper bound of noise level under
which the estimation could be highly correlated with the
original signal. In addition, it provides the prerequisite that
we could take N-P test as the UMP test when detecting the
sparse signal in a composite hypothesis framework.

Corollary 3. If 𝜎 < (‖s‖2/𝐶𝑆)(𝑚 + 𝜆√2𝑚)−1/2, then s𝑇s# is
bounded above some positive constant 𝜁.
Proof. It is easy to discover that the size of perturbation e =
An ∈ R𝑚 is still white Gaussian noise with e ∼ 𝑁(0, 𝜎2Im).

From inequality (15), it is straightforward to obtain

s𝑇s# ≥ 12 (‖s‖22 + s#22 − 𝐶𝑆𝜀2) . (17)

From the triangle inequality and the guarantee of the
results fromTheorem 1, we could get

‖s‖2 − s#2 ≤ s#2 − ‖s‖2 ≤ s# − s2 ≤ 𝐶𝑆𝜀. (18)

Then, it becomes as follows:s#2 ≥ ‖s‖2 − 𝐶𝑆𝜀,
s𝑇s# ≥ 12 [‖s‖22 + (‖s‖2 − 𝐶𝑆𝜀)2 − 𝐶𝑆2𝜀2]

= ‖s‖22 − ‖s‖2 𝐶𝑆𝜀.
(19)

Therefore, if ‖s‖2 > 𝐶𝑆𝜀, denoting 𝜁 = ‖s‖22 − ‖s‖2𝐶𝑆𝜀 and
according to the abovementioned inequality, it yields that

s𝑇s# ≥ 𝜁 > 0. (20)

For Gaussian noise e ∼ 𝑁(0, 𝜎2Im), 𝜀2 = 𝜎2(𝑚 + 𝜆√2𝑚)
is established for large probability when ‖e‖2 ≤ 𝜀. The upper
bound could be obtained where

𝜎2 < ‖s‖22𝐶𝑆2 (𝑚 + 𝜆√2𝑚)−1 . (21)

Usually, 𝜆 = 2 or 3 is a reasonable choice and other choices
are also possible.

4.4. Preliminary Analyses in Finite Dimension. In practice, we
are on target to detect the sparse signal even though it is weak
and the noise is substantial. Therefore, the detection scheme
is required to be sensitive to the target objective and to be
robust against interference. In this paper, detection sensitivity
and robustness are measured in terms of two kinds of error
probabilities𝑃𝐹 and𝑃𝑀. Next, finite dimensional preliminary
analyses will be introduced focusing on these two properties.

False alarm probability 𝑃𝐹 and miss detection probability𝑃𝑀 could reflect the sensitivity and robustness of the detec-
tion scheme to the target object, respectively. However, these
two properties contradict each other. By adjusting the param-
eter and increasing the decision threshold, the robustness of
the detection system would improve as 𝑃𝐹 would decrease
while the sensitivity gets worse with 𝑃𝑀 rising up. On the
contrary, lowering the decision threshold makes the system
more sensitive since𝑃𝑀 decreases yet𝑃𝐹 gets bigger. In reality,1−𝑃𝑀, which is also called detection probability𝑃𝐷, is usually
utilized to measure the sensitivity of the detection scheme.
As adopted in this paper, Neyman-Pearson test could obtain
the largest 𝑃𝐷 under certain constrained 𝑃𝐹. Nevertheless, we
could obtain an upper bound of 𝑃𝑀 employing the corollary
mentioned before.

Lemma 4. Under the test of (13), supposing that 𝑡 = 1, if the
false alarm probability is given as 𝑃𝐹 = 𝛼, then the following
inequality establishes

𝑃𝑀 ≤ 𝐶2√‖s‖2 cos 𝜃/𝜎 − 𝐶1 + 𝐶3
⋅ exp(−(‖s‖2 cos 𝜃 − 𝐶1𝜎)22𝜎2 ) , (22)

where cos 𝜃 = s𝑇s#/(‖s‖2 × ‖s#‖2) and 𝜃 is the angle between s
and s#.
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Proof. In the case that there is only one observation, by taking
a logarithm, we obtain that test of (13) could be equivalent to
testing on 𝑙 = (1/𝑡) ∑𝑡𝑖=1 x𝑖𝑇s#. Also, the threshold changes
correspondingly as

𝑙 𝐻1≷
𝐻0

𝜏𝑡,
𝜏𝑡 = 𝜎2𝑡 log 𝜂𝑡 + 12 .

(23)

The distributions of the test 𝑙 become as follows:

𝐻0 : 𝑙 ∼ 𝑁(0, 𝜎2 s#2𝑡 )
𝐻1 : 𝑙 ∼ 𝑁(s𝑇s#, 𝜎2 s#2𝑡 ) .

(24)

As a result, for a test level of 𝛼 (0 < 𝛼 < 1), the threshold
should satisfy the following equation:

𝑃𝐹 = 𝑃𝑟 (𝑙 > 𝜏𝑡 | 𝐻0) = 1 − Φ( √𝑡𝜏𝑡𝜎 s#2) = 𝛼, (25)

where Φ is the CDF of standard normal distribution.
As seen there, it yields that

𝜏𝑡 = 𝜎 s#2Φ−1 (1 − 𝛼)√𝑡 , (26)

𝑃𝑀 = 𝑃𝑟 (𝑙 < 𝜏𝑡 | 𝐻1) = Φ((𝜏𝑡 − s𝑇s#)√𝑡𝜎 s#2 ) . (27)

Then, utilizing the inequality for the tail probability of
standard normal distribution [32],

1 − Φ (𝑥) ≤ 𝜙 (𝑥)
√max {𝑥, 𝑥2} + 2/𝜋 ∀𝑥 : 𝑥 ≥ 0. (28)

It is not hard to get

𝑃𝑀 ≤ 𝐶2√‖s‖2 cos 𝜃/𝜎 − 𝐶1 + 𝐶3
⋅ exp(−(‖s‖2 cos 𝜃 − 𝐶1𝜎)22𝜎2 ) . (29)

Under the condition of high SNR, acting up to similar
technique of Corollary 3 that cos 𝜃 > 1 − 2𝐶s𝜀/‖s‖2, we could
work out the following inequality:

𝑃𝑀 ≤ 𝐶2√‖s‖2 /𝜎 − 2𝐶s𝜀/𝜎 − 𝐶1 + 𝐶3
⋅ exp(−12 (‖s‖2𝜎 − 2𝐶s𝜀𝜎 − 𝐶1)2) .

(30)

A
m

pl
itu

de

Index
0 50 100 150

A fifteen-sparse signal

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Figure 3: Synthetic sparse signal example.

This lemma indicates that the miss detection probability
decays exponentially with the SNR and the accuracy of sparse
estimation in terms of the angle 𝜃. Considering the factor
of exponent decay rate, ‖s‖2/𝜎 is the square root of the
SNR of a matched filter when s is available, which is totally
different from input signal-to-noise ratio, denoted by SNR =‖s‖2/𝑛𝜎.The latter declines linearly with the increase of signal
dimension 𝑛. Another factor of the decay rate is 𝐶s𝜀 which
shows the cost incurred by the unknown signal nature where𝜀 is the error of sparse estimation.

5. Experiments and Results

A great deal of simulation experiments of LRT-SE have been
undertaken using synthetic sparse signals and typical sparse
signal samples from satellite telemetry to verify the properties
of LRT-SE. The setup of simulation will be explained in
Section 5.1, including the explanation of the sparse signals and
the setting value of 𝑛,𝑚, and other parameters. Section 5.2
illustrates plentiful experimental results and compares the
performance of LRT-SE against the optimal LRT and other
detectors.

5.1. Sparse Signals and Parameters Setting. For the sake of
evaluating the proposed detection scheme, both synthetic
and real sampled sparse signals are applied to experiments.
The synthetic sparse signal s ∈ R𝑛 is created by randomly
choosing its support set supp(s) fl {𝑖 | s𝑖 ̸= 0}with sparsity 𝑆.
And the nonzero components are i.i.d. drawn from standard
normal distributions. Empirically, energy estimation could be
regarded as an insignificant factor in finite settings, which
enables us to normalize the energy of s so that ‖s‖2 = 1.
Figure 3 presents a typical randomly generated sparse signal.
It is because the sparse signal is randomly generated that
during the simulation s could be deterministic and unknown
by the detectors of LRT-SE, while in the case of LRT scheme
it is known.
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Table 1: Simulation parameters.

Parameter Value𝑛 150𝑚 120𝑆 Changes accordingly, 𝑆 ≪ 𝑛
s

(1) supp(s) := {𝑖 | s𝑖 ̸= 0} is randomly
chosen with sparsity 𝑆(2) {s𝑖 | 𝑖 ∈ supp(s)}
are i.i.d. drawn from standard normal
distributions
(3) Normalization of energy ‖s‖2 = 1

SNR SNR = 10 log10 (‖s‖2/𝑛𝜎2), −20 dB∼0 dB𝜎2 Changes with SNR
n 𝑛 ∼ 𝑁 (0, 𝜎2In)𝑡 𝑡 ≥ 1
A Gaussian random matrix A ∈ R𝑚×𝑛𝜆 2𝜀 𝜀2 = 𝜎2(𝑚 + 𝜆√2𝑚)𝛼 0.01∼1

The specific parameters of the simulation experiments on
synthetic sparse signal are tabulated in Table 1.

The satellite telemetry data employed in this paper
comes from a high altitude satellite consisting of a 1024-
dimensional synthetic angular momentum of wheel vector,
a 512-dimensional yaw angle vector, and a 512-dimensional
pitch angle vector, as Figure 4 shows. These data all possess
the characteristics of high dimensionality, huge amount,
sparsity in time domain, and noise contamination.Moreover,
according to index of downlink signal, the signal power
of telemetry data is −110 dBm while the noise power is−100.7 dBm. After amplification, the final SNR is approxi-
mately −9.3 dB. Also, as has been declared, there exists no
prior information about the telemetry data except for their
sparsity which accords with the application condition of LRT-
SE.

5.2. Simulation Results. Subsequently, a large number of
simulation experiments have been conducted and several
plots are generated as the result figures show.

Figures 5–7 are results from simulation experiments on
synthetic sparse signals. Figure 5 depicts the ROC curves of
LRT-SE and LRT.The variation trend of detection probability
with respect to SNR is displayed in Figure 6. Figure 7
illustrates the ROC curve of LRT-SE as a function of the
number of measurements. These figures come from the
average of experiment results corresponding to 10000 test
signals mixed with Gaussian noise vectors.

Figure 8 shows the ROC curves of LRT-SE detecting
telemetry data. Moreover, the experiment is carried out on
500 signals extracted from the satellite downlink signal files.

(i) ROC Curves of Detecting Synthetic Signals. See Figure 5.

(ii) Detection Probability versus SNR. See Figure 6.

(iii) ROC Curves versus Measurements Number. See Figure 7.

(iv) ROC Curves of Detecting Telemetry Data. See Figure 8.

6. Discussion

In this section, a detailed discussion on the results presented
in previous sections is firstly carried out. Then, we further
investigate the high dimensional properties of LRT-SE and
discuss the corresponding result figures.

6.1. Analytical Discussion

(i) ROCCurves ofDetecting Synthetic Signals. FromFigure 5, it
can be observed that the proposed LRT-SE has approximate
performance to the optimal LRT under relatively low SNR.
By choosing appropriate 𝑃𝐹, such as 0.05, the detection
rate could reach 0.9 which is acceptable in most cases. The
difference of the detection probabilities between the two
detectors is obvious when 𝑃𝐹 is less than 0.1 due to the cost
of no prior information.

(ii) Detection Probability versus SNR. Similar to Figure 5, in
Figure 6, the curve of LRT performs as an ideal detector when
SNR is fairly low while LRT-SE and GLRT approach nearly
perfect detection when SNR exceeds −5 dB with the sparsity𝑆 = 15. This is mainly because when noise is repressed, s𝑇s#
would enlarge according to Corollary 3 and bring about
improvement of detection probability of likelihood test based
on sparse estimation. It should be pointed out that although
GLRT seems to own better asymptotic optimality compared
with LRT-SE, it is anN-P hard optimization problemutilizing
GLRT if the signal is compressed by measurement matrix
in advance [33]. GLRT has to search every set satisfying{s : ‖s‖0 ≤ 𝑆} making it impossible to calculate for
high dimensional signals in practice. Conversely, LRT-SE
could estimate the unknown and arbitrary sparse signal with
relatively low computational complexity. In general, in the
case of strong sparsity, the asymptotic performance of LRT-
SE is in the vicinity of GLRT while LRT-SE could be more
easily implemented.

(iii) ROC Curves versus Measurements Number. As plotted
in Figure 7, it could be discovered that, for a fixed sparsity
level of 2, SNR of −5 dB, and 𝑡 = 1, the detection probability
increases as more measurements have been undertaken. The
compression ratio is defined as 𝑚/𝑛. It is not hard to
expect such a result for the larger the compression ratio
is, the more the crucial information may be lost inducing
difficulty in accurately reconstructing the sparse signal.
Although compression ratio is not specifically demanded in
this paper, there exists a lower bound of measurements
where 𝑚 ≥ 𝐶 ⋅ 𝑆 ⋅ log(𝑛/𝑆) to guarantee the matrix
obeying the restricted isometry property, just as Section 3.2
mentioned.

(iv) ROC Curves of Detecting Telemetry Data. Every figure of
Figure 8 depicts three curves with 𝑡 = 1, 5, 10, respectively,
because the satellite telemetry system could provide at most
ten observations. From Figure 8(a), it is notable that LRT-SE
reaches nearly a hundred percent detection rate with 𝑃𝐹 less
than 0.05 even if only one observation is provided. It performs
near optimally with larger 𝑡.
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Figure 4: Snapshots of the sparse telemetry data: (a) original data of synthetic angular momentum of wheel; (b) original data of yaw angle;
and (c) original data of pitch angle.

However, the curves of Figures 8(b) and 8(c) are not as
good as in Figure 8(a) which is partly because of the sparsity
and the signal amplitude as shown in Figures 4(b) and 4(c).
Comparing Figures 4(a) and 4(b), the amplitudes of yaw angle
data are less uniform than of angular momentum which is
reflected in poorer detection probability. Likewise, it could be
indicated that Figure 8(c) shows worse performance because
the sparsity of pitch angle data is weaker than of angular
momentum data. This phenomenon is worth researching in
the future works.

Nonetheless, the loss caused by weak sparsity and irreg-
ular amplitudes could be compensated by obtaining more
observations as the arrows in Figures 8(b) and 8(c) suggest.
If possible, under certain 𝑃𝐹 and SNR, the more the observa-
tions available, the better the detection rate that LRT-SE could
approach.

6.2. Further Discussion. When discussing the high dimen-
sional condition, asymptotic properties or inferences, for

example, consistency, are usually adopted to describe the
performance of point estimator and hypothesis test. Further
investigation has been conducted under the condition that𝑛 → ∞, 𝑡 → ∞.

(i) Chernoff Consistency. Consistency is a property describing
the convergence of error probabilities to zero in some sense,
as 𝑡 → ∞. Among different definitions of consistency,
Chernoff consistency requires that both 𝑃𝐹 and 𝑃𝑀 converge
to 0 with 𝑡 → ∞ [34].

Definition 5. The detector 𝜑(x𝑡; 𝜂) of the hypothesis test
is called Chernoff-consistent if and only if there exists a
criterion 𝜂𝑡 such that the hypothesis test (13) can perfectly
distinguish samples from the binary hypotheses when 𝑡 →∞. That is,

(1) lim𝑡→∞𝑃𝐷[𝜑(x𝑡; 𝜂)] = 1, for any x𝑡 under𝐻1.
(2) lim𝑡→∞𝑃𝐹[𝜑(x𝑡; 𝜂)] = 0, for any x𝑡 under𝐻0.
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Figure 5: ROC curves of LRT-SE compared to LRT.
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Detection probabilities of LRT, LRT-SE, and GLRT versus SNR
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Figure 6: Detection probability versus SNR.

The next theorem describes that only if the noise level
is controlled within a certain range could a reliable and
consistent detector be possible.

Theorem 6. One has A ∈ R𝑚×𝑛, and s is the 𝑆-sparse
unknown signal of interest where 𝑆 is a function of A. Let{x0, x1, . . . , x𝑡} (𝑡 ≥ 1) be a sequence of i.i.d. observations
sampled from one of the two hypotheses in (13). Let 𝜑(x𝑡; 𝜂) be
a detector defined in (14).

If the standard deviation obeys 𝜎 < (‖s‖2/𝐶s)(𝑚 +𝜆√2𝑚)−1/2, then 𝜑(x𝑡; 𝜂) is Chernoff-consistent, where 𝐶s is a
positive constant from (15).
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Figure 7: ROC curve of LRT-SE under different measurement
numbers.

Proof. Given 𝜎 < (‖s‖2/𝐶s)(𝑚 + 𝜆√2𝑚)−1/2 and applying
Corollary 3, apparently we have s𝑇s# ≥ 𝜁 > 0. This condition
guarantees that the reconstructed signal is sufficiently good
to separate𝐻0 and𝐻1.

As has been obtained in (27) that 𝑃𝑀(𝜑(x𝑡; 𝜂)) =Φ(Φ−1(1−𝛼)−√𝑡s𝑇s#/𝜎‖s#‖2), note that the test level is 𝛼 for
all 𝑡. Further, let [𝛼(𝑡)] ⊂ (0, 1) be a sequence satisfying𝛼(𝑡) → 0 and √𝑡𝛼(𝑡) → ∞. Then, 𝜑(x𝑡; 𝜂) has test level 𝛼(𝑡)
for each 𝑡, and therefore 𝑃𝐹(𝜑(x𝑡; 𝜂)) = 𝛼(𝑡) → 0.

At the same time, as 𝛼(𝑡) → 0, it is obvious that Φ−1(1 −𝛼(𝑡)) → ∞. Considering that √𝑡s𝑇s#/𝜎‖s#‖2 is relatively
small, we could come to a conclusion that 𝑃𝑀(𝜑(x𝑡; 𝜂)) goes
to zero with 𝛼(𝑡) in place of 𝛼.

Summing up the above, the detector 𝜑(x𝑡; 𝜂) of LRT-SE is
Chernoff-consistent.

(i) Result Figure of Chernoff Consistency. For the sake of veri-
fying theChernoff consistency of LRT-SE, experiments under
a noise level which is a little bit larger than the upper bound
introduced in Theorem 6 are carried out. Particularly, from
the inequality 𝜎2 < ‖s‖2/𝐶2s (𝑚 + 𝜆√2𝑚), it is defined that
[17] 𝐶s = (4/√3)(1/(√1 − 𝛿4s − √1/3√1 + 𝛿3s)). We could
get 𝐶s > 4/√3 and enforce 𝜎2 = ‖s‖2/(𝑚 + 𝜆√2𝑚). In
addition, during the experiment, three sparsity levels of 𝑆 =2, 𝑆 = 15, 𝑆 = 30 are chosen with fixed SNR under 1000 tests.

We use the smallest total error probability 𝑃𝐹 + 𝑃𝑀
across all possible thresholds to characterize the Chernoff
consistency and check if it would reach zero ultimately.
The result is plotted in Figure 9 which identifies with the
theoretical derivation.When observations are plenty enough,
the sum of false alarm and miss detection probabilities
decreases to zero for all three sparsity levels.What ismore, the
stronger the sparsity of the signal is, the quicker the test
approaches zero error. This indicates that, in the case of fixed
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Figure 8: LRT-SE performance of detecting telemetry data: (a) angular momentum detection performance; (b) yaw angle detection
performance; and (c) pitch angle detection performance.

SNR, the less sparse the signal is, the harder it is for detectors
to separate it from background noise.

(ii) Error Exponent. Error exponent is the rate at which the
error probabilities of the detector decrease as the number
of observations increases. It is practical to discuss the error
exponent because it provides us with a rough estimate of how
many 𝑡 are needed to control the error probabilities to a fairly
small scale. Consequently, the error exponent for a Neyman-
Pearson LRT-SE detector is defined as

𝐸NP
LRT-SE = − lim𝑡→∞1𝑡 log𝑃𝑀, (31)

describing the rate at which the miss probability decays
exponentially when 𝑡 → ∞.

Note that the test statistic in (23) could be the sum of the
of i.i.d. random variables 𝑡(𝑥) = 𝑥𝑇s#, whose distributions are

ℎ0 : 𝑡 (𝑥) ∼ 𝑁 (0, 𝜎2) ,
ℎ1 : 𝑡 (𝑥) ∼ 𝑁 (s𝑇s#, 𝜎2) . (32)

The test has been simplified to better characterize the error
exponent. By applying the following lemma, the ideal error
exponent could be obtained.

Lemma 7 (Chernoff-Stein lemma [35]). Let {x0, x1,. . . , x𝑡} (𝑡 ≥ 1) be i.i.d. drawn from one of the hypotheses in
(10). Denote the sparse reconstruction from x0 by s#. Consider
that the test on each observation obeys ℎ0 and ℎ1 in (32) under
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Figure 9: Total error probability based on 1000 tests with fixed SNR.

𝐻0 and𝐻1, respectively. Let 𝐴 𝑡 ⊆ T𝑡 be an acceptance region
for hypothesis 𝐻0, where T𝑡 = 𝑡(x1) × 𝑡(x2) × ⋅ ⋅ ⋅ × 𝑡(x𝑡) is
the Cartesian product of 𝑡(x1) through 𝑡(x𝑡). Then, let the false
alarm and miss probabilities corresponding to 𝐴 𝑡 be

𝑃𝑡𝐹 = ℎ𝑡0 (𝐴𝑐𝑡) ,
𝑃𝑡𝑀 = ℎ𝑡1 (𝐴 𝑡) . (33)

For 0 < 𝛼 < 1/2, define
𝑃𝑡,𝛼𝑀 = min𝑃𝑡𝑀,
𝐴 𝑡 ⊆ T

𝑡,
𝑃𝑡𝐹 < 𝛼,

(34)

where the minimization is over all possible acceptance regions
inT𝑡 having a false alarm probability less than 𝛼. Then

lim
𝑡→∞

1𝑡 log𝑃𝑡,𝛼𝑀 = −𝐷 (ℎ0 ‖ ℎ1) , (35)

where 𝐷(ℎ0 ‖ ℎ1) < ∞ is the Kullback-Leibler distance
between ℎ0 and ℎ1.

Lemma 7 gives us a quantitative description of error
exponent. Afterwards, Theorem 8 introduces the theoretical
value error exponent utilizing Lemma 7.

Theorem 8. One has

𝐸NP
LRT-SE = 12 ⋅ ‖s‖

2
2 cos
2𝜃𝜎2 , (36)

where 𝜃 is the angle between s and s#.

Miss detection probability as a function of the number of
observations for the sparse signal
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Figure 10: Miss detection probability against number of observa-
tions.

Proof. The Kullback-Leibler distance is defined as

𝐷(ℎ0 ℎ1 ) = ∫∞
−∞

ℎ0 (𝑥) lnℎ0 (𝑥)ℎ1 (𝑥)d𝑥, (37)

where ℎ0(𝑥) and ℎ1(𝑥) are distributions of (32).
After simple calculation of the integral, it can be derived

that

𝐸NP
LRT-SE = − lim𝑡→∞1𝑡 log𝑃𝑀 = 𝐷 (ℎ0 ‖ ℎ1)

= 12 ⋅ ‖s‖
2
2 cos
2𝜃𝜎2 , (38)

where cos 𝜃 = s𝑇s#/(‖s‖2 × ‖s#‖2).
(i) Result Figure of Error Exponent. Error exponent is pre-
sented in Figure 10 by plotting the miss detection probability
against number of observations in exponent coordinates.
The green curve depicts the theoretical decay curve of LRT-
SE as Theorem 8 indicates, while the blue curve displays
the actual miss detection probabilities of LRT-SE. It could
be revealed that both actual and theoretical curves decay
exponentially as the observation numbers increase because
they are approximated to a straight line. Nevertheless, there
exists an eternal gap between these two curves because the
analysis takes no account of constant term. Beyond the result
of this figure, it could be inferred and easily verified that the
optimal LRT detector also possesses error exponent which
could reach 10−10 order with very few observations.

From further discussion, we could reach a conclusion that
the performance of LRT-SE could get promoted when 𝑛 and 𝑡
are big enough via asymptotic inference analysis. In order to
satisfy the sufficient condition of consistency, the noise level
should be under a certain limit. In addition, it is expected that
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themore the observations available, the faster the decay of the
detection error probability.

7. Conclusions and Future Works

In this paper, a new method under the name LRT-SE which
integrates the likelihood ratio test and sparse estimation
for sparse signal detection is proposed. As long as the
background noise level is limited within a relative broad
range, LRT-SE could perform in close proximity to the exist-
ing asymptotic optimal methods in both finite dimension
and high dimension. It is revealed that the miss detection
probability has an upper bound in direct proportion to the
angle between estimated signal and original signal. But as the
number of observations increases and approaches infinity, the
false alarm probability and miss detection probability would
eventually reach zero. Moreover, the exponential decay rate
of miss detection probability could be defined as the error
exponent and calculated by large deviation. In short, the LRT-
SE scheme provides a novel detection method which could
achieve high availability and robustness of detecting sparse
signal with no prior information as well as relatively low
computational complexity compared with GLRT.

In the future, there are two promising improvement
directions for us to do further research. Firstly, the accuracy
of sparse estimation has the potential to be improved by
employing a better reconstruction algorithm. Secondly, the
application of LRT-SE in distributed network deserves deeper
research where the distributed network could be a wireless
sensor network or in a telemetry system.
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