890 research outputs found

    Wrinkleless Mylar Cylinders: Design and Prototyping for the BONuS detector at Jefferson Lab

    Get PDF
    The second BONuS (Barely Off-Shell Nucleon Structure) experiment seeks to expand the detection range of the neutron structure to Bjorken x up to 0.8. For that, a new radial time projection chamber needs to be built, which is twice as long as the original one. The goal of this work is to make prototypes for the conducting mylar shell that generates a uniform radial electric field for the chamber, and to develop a specially designed apparatus and procedure that will reduce the wrinkles in this ultra-thin cylindrical mylar shell

    An email classification model based on rough set theory

    Full text link
    The communication via email is one of the most popular services of the Internet. Emails have brought us great convenience in our daily work and life. However, unsolicited messages or spam, flood our email boxes, which results in bandwidth, time and money wasting. To this end, this paper presents a rough set based model to classify emails into three categories - spam, no-spam and suspicious, rather than two classes (spam and non-spam) in most currently used approaches. By comparing with popular classification methods like Naive Bayes classification, the error ratio that a non-spam is discriminated to spam can be reduced using our proposed model.<br /

    Underlying burning resistant mechanisms for titanium alloy

    Full text link
    The "titanium fire" as produced during high pressure and friction is the major failure scenario for aero-engines. To alleviate this issue, Ti-V-Cr and Ti-Cu-Al series burn resistant titanium alloys have been developed. However, which burn resistant alloy exhibit better property with reasonable cost needs to be evaluated. This work unveils the burning mechanisms of these alloys and discusses whether burn resistance of Cr and V can be replaced by Cu, on which thorough exploration is lacking. Two representative burn resistant alloys are considered, including Ti14(Ti-13Cu-1Al-0.2Si) and Ti40(Ti-25V-15Cr-0.2Si)alloys. Compared with the commercial non-burn resistant titanium alloy, i.e., TC4(Ti-6Al-4V)alloy, it has been found that both Ti14 and Ti40 alloys form "protective" shields during the burning process. Specifically, for Ti14 alloy, a clear Cu-rich layer is formed at the interface between burning product zone and heat affected zone, which consumes oxygen by producing Cu-O compounds and impedes the reaction with Ti-matrix. This work has established a fundamental understanding of burning resistant mechanisms for titanium alloys. Importantly, it is found that Cu could endow titanium alloys with similar burn resistant capability as that of V or Cr, which opens a cost-effective avenue to design burn resistant titanium alloys.Comment: 6 figure

    Experimental Investigation on the Operating Characteristics of a Semi-hermetic Twin Screw Refrigeration Compressor by means of p-V Diagram

    Get PDF
    In this paper, a comprehensive experimental investigation is carried out to evaluate the operating characteristics of a semi-hermetic twin screw refrigeration compressor at different oil flow rates and slide valve positions under various conditions. The working volume pressure of the compressor is recorded by a serial of sensors arranged in consecutive positions in the housing. These measured pressure data are then transformed into an indicator diagram. Based on the p-V diagrams, the effect mechanism of some factors such as evaporation temperature, condensation temperature, slide valve positions, oil flow rates for the suction and discharge end bearings lubricating and oil flow rate returned from the suction pipe on the compressor performance and working process is analyzed. These results can be useful for optimum design of oil flow passage assembly and selection of optimal built-in volume ratio to improve the energy efficiency of refrigeration system with semi-hermetic twin screw compressor

    New hanger design approach of tied-arch bridge to enhance its robustness

    Get PDF
    As the crucial components among the tied-arch bridge, the local failure of hangers may trigger a progressive collapse through the entire tied-arch bridge. However, the current design guidance as regards hangers still lacks consideration of structure robustness under an extreme hazard. To improve the structural robustness of tied-arch bridge under extreme conditions, a new hanger design method is proposed, which is termed as asymmetric parallel double-hanger system. Based on Miner’s linear cumulative damage law, an analysis on the fatigue life of the double-hanger system was conducted to verify the feasibility of the proposal, and then a dynamic time-history analysis was employed to simulate the transitory fracture impact due to one or more hangers fracturing. According to the simulation results, the structural robustness is greatly enhanced with asymmetric parallel-double hanger system design, when compared with single hanger system design. When one or more hangers reveal local damage, it will not trigger a progress failure to the whole structure in particular. Several practical suggestions of bridge system’s load-carrying capacity are also put forward for the future arch bridge design at the end of this paper. © 2018 Korean Society of Civil Engineer

    DAAM1 Is a Formin Required for Centrosome Re-Orientation during Cell Migration

    Get PDF
    BACKGROUND: Disheveled-associated activator of morphogenesis 1 (DAAM1) is a formin acting downstream of Wnt signaling that is important for planar cell polarity. It has been shown to promote proper cell polarization during embryonic development in both Xenopus and Drosophila. Importantly, DAAM1 binds to Disheveled (Dvl) and thus functions downstream of the Frizzled receptors. Little is known of how DAAM1 is localized and functions in mammalian cells. We investigate here how DAAM1 affects migration and polarization of cultured cells and conclude that it plays a key role in centrosome polarity. METHODOLOGY/PRINCIPAL FINDINGS: Using a specific antibody to DAAM1, we find that the protein localizes to the acto-myosin system and co-localizes with ventral myosin IIB-containing actin stress fibers. These fibers are particularly evident in the sub-nuclear region. An N-terminal region of DAAM1 is responsible for this targeting and the DAAM1(1-440) protein can interact with myosin IIB fibers independently of either F-actin or RhoA binding. We also demonstrate that DAAM1 depletion inhibits Golgi reorientation in wound healing assays. Wound-edge cells exhibit multiple protrusions characteristic of unpolarized cell migration. Finally, in U2OS cells lines stably expressing DAAM1, we observe an enhanced myosin IIB stress fiber network which opposes cell migration. CONCLUSIONS/SIGNIFICANCE: This work highlights the importance of DAAM1 in processes underlying cell polarity and suggests that it acts in part by affecting the function of acto-myosin IIB system. It also emphasizes the importance of the N-terminal half of DAAM1. DAAM1 depletion strongly blocks centrosomal re-polarization, supporting the concept that DAAM1 signaling cooperates with the established Cdc42 associated polarity complex. These findings are also consistent with the observation that ablation of myosin IIB but not myosin IIA results in polarity defects downstream of Wnt signaling. The structure-function analysis of DAAM1 in cultured cells parallels more complex morphological events in the developing embryo

    Serum 25-hydroxyvitamin D and bone mineral density among children and adolescents in a Northwest Chinese city

    Get PDF
    Although vitamin D is essential for bone health, little is known about prevalence of vitamin D deficiency and low bone mineral density (BMD) among children, especially those in developing countries. It also remains unclear whether serum 25-hydroxyvitamin D [25(OH)D] is associated with BMD among children. We investigated these questions among children and adolescents in Yinchuan (latitude: 38° N), Ningxia, an economically underdeveloped province in Northwest China. A total of 1582 children (756 boys and 826 girls), aged 6–18 years, were recruited from schools using the stratified random sampling method in fall 2015. Serum 25(OH)D concentrations were measured by enzyme-linked immunosorbent assay, and BMD was quantified by dual-energy X-ray absorptiometry. Vitamin D deficiency (defined as serum 25(OH)D ≤ 37.5 nmol/L) was present in 35.5% of study subjects. There were no clear patterns of differences in serum 25(OH)D concentrations across the four age groups compared (6–9 years, 10–13 years, 14–16 years, and 17–18 years). The prevalence of low total body less head (TBLH) BMD (defined as a Z-score of ≤ −2.0 standard deviations away from the mean BMD values of the Chinese pediatric reference population) among children examined was 1.8% and was not significantly different among the four age groups considered. Linear regression analysis revealed that age, weight, and height were significantly and positively associated with TBLH BMD and that the strongest determinant of TBLH BMD was age in boys and weight in girls. There were no significant correlations between serum 25(OH)D concentrations and BMD obtained for total body and at various skeletal sites (r ranged from −0.005 to 0.014) regardless of whether children evaluated were sufficient, insufficient, or deficient in vitamin D. In conclusion, more than one-third of children and adolescents in a Northwest Chinese city were deficient in vitamin D but only <2% of them developed low BMD
    corecore