68 research outputs found

    Research on Flow Characteristics of Electronically Controlled Injection Device Developed for High-Power Natural Gas Engines

    Get PDF
    Accurate fuel supply is a key factor that influences the performance of high-power natural gas engines. The premixed and single-point natural gas supply system is the most commonly used method to ensure a large fuel supply but one of its shortcomings is the inaccuracy of the fuel supply. A new type of natural gas injection device with fungiform configuration and electronically controlled actuator was developed to achieve high efficiency and stable operation in high-power natural gas engines. Firstly, a computational fluid dynamics (CFD) model of the injection device was created. Based on this model, the key structure parameters that have a significant influence on the outlet flow were confirmed. A particle swarm optimization (PSO) model was developed to identify the optimal outflow structure. Then, a flow function for precise flow supply control was constructed based on a response surface model, according to the flow rates of the device under different control parameters. Finally, a flow-characteristic test bench and a high-power engine prototype were developed to verify the simulation and optimization results. The results indicate that the optimized outflow structure shows low pressure loss and a large flow rate, improving injection efficiency by 10.37% and mass flow by 11.78% under 0.4 Mpa pressure difference. More importantly, the cycle fuel supply could be controlled accurately for each cylinder owing to the developed flow function. Consequently, compared with the original engine using a single-point natural gas supply system, the cylinder performance imbalance was improved by 37.47%

    Development of Drive Control Strategy for Front-and-Rear-Motor-Drive Electric Vehicle (FRMDEV)

    Full text link
    In order to achieve both high-efficiency drive and low-jerk mode switch in FRMDEVs, a drive control strategy is proposed, consisting of top-layer torque distribution aimed at optimal efficiency and low-layer coordination control improving mode-switch jerk. First, with the use of the off-line particle swarm optimization algorithm (PSOA), the optimal switching boundary between single-motor-drive mode (SMDM) and dual-motor drive mode (DMDM) was modelled and a real-time torque distribution model based on the radial basis function (RBF) was created to achieve the optimal torque distribution. Then, referring to the dynamic characteristics of mode switch tested on a dual-motor test bench, a torque coordination strategy by controlling the variation rate of the torque distribution coefficient during the mode-switch process was developed. Finally, based on a hardware-in-loop (HIL) test platform and an FRMDEV, the proposed drive control strategy was verified. The test results show that both drive economy and comfort were improved significantly by the use of the developed drive control strategy

    A two-dimensional angular-resolved proton spectrometer

    Get PDF
    We present a novel design of two-dimensional (2D) angular-resolved spectrometer for full beam characterization of ultrashort intense laser driven proton sources. A rotated 2D pinhole array was employed, as selective entrance before a pair of parallel permanent magnets, to sample the full proton beam into discrete beamlets. The proton beamlets are subsequently dispersed without overlapping onto a planar detector. Representative experimental result of protons generated from femtosecond intense laser interaction with thin foil target is presented

    A flexible, on-line magnetic spectrometer for ultra-intense laser produced fast electron measurement

    Get PDF
    We have developed an on-line magnetic spectrometer to measure energy distributions of fast electrons generated from ultra-intense laser-solid interactions. The spectrometer consists of a sheet of plastic scintillator, a bundle of non-scintillating plastic fibers, and an sCMOS camera recording system. The design advantages include on-line capturing ability, versatility of detection arrangement, and resistance to harsh in-chamber environment. The validity of the instrument was tested experimentally. This spectrometer can be applied to the characterization of fast electron source for understanding fundamental laser-plasma interaction physics and to the optimization of high-repetition-rate laser-driven applications

    The Structure of the NPC1L1 N-Terminal Domain in a Closed Conformation

    Get PDF
    NPC1L1 is the molecular target of the cholesterol lowering drug Ezetimibe and mediates the intestinal absorption of cholesterol. Inhibition or deletion of NPC1L1 reduces intestinal cholesterol absorption, resulting in reduction of plasma cholesterol levels.Here we present the 2.8 Ã… crystal structure of the N-terminal domain (NTD) of NPC1L1 in the absence of cholesterol. The structure, combined with biochemical data, reveals the mechanism of cholesterol selectivity of NPC1L1. Comparison to the cholesterol free and bound structures of NPC1(NTD) reveals that NPC1L1(NTD) is in a closed conformation and the sterol binding pocket is occluded from solvent.The structure of NPC1L1(NTD) reveals a degree of flexibility surrounding the entrance to the sterol binding pocket, suggesting a gating mechanism that relies on multiple movements around the entrance to the sterol binding pocket

    Demonstration of laser-produced neutron diagnostic by radiative capture gamma-rays

    Get PDF
    We report a new scenario of time-of-flight (TOF) technique in which fast neutrons and delayed gamma-ray signals were both recorded in a millisecond time window in harsh environments induced by high-intensity lasers. The delayed gamma signals, arriving far later than the original fast neutron and often being ignored previously, were identified to be the results of radiative captures of thermalized neutrons. The linear correlation between gamma photon number and the fast neutron yield shows that these delayed gamma events can be employed for neutron diagnosis. This method can reduce the detecting efficiency dropping problem caused by prompt high-flux gamma radiation, and provides a new way for neutron diagnosing in high-intensity laser-target interaction experiments

    Progress on New Preparation Methods, Microstructures, and Protective Properties of High-Entropy Alloy Coatings

    No full text
    Currently, the preparations of high-entropy alloy (HEA) coatings have developed into new methods such as thermal spraying, electrospark deposition technology, and magnetron sputtering. The microstructures and protective properties of HEA coatings prepared by different methods are bound to be different. Moreover, because HEAs have a wide range of composition systems, the difference in composition will inevitably lead to a change in process parameters and post-treatment methods, and then affect the microstructures and protective properties. This paper introduces the working mechanism of thermal spraying, electrospark deposition technology, and magnetron sputtering, compares the advantages and disadvantages of each method, and focuses on the influences of the compositions, process parameters, and post-treatment process on the microstructures and properties of the coating. Furthermore, this paper outlines the correlation between preparation methods, process parameters, microstructures, and properties, which will provide a reference for further development of the application of high-entropy alloy coatings. On this basis, the future development direction of HEA coatings is prospected

    Development of Drive Control Strategy for Front-and-Rear-Motor-Drive Electric Vehicle (FRMDEV)

    Get PDF
    In order to achieve both high-efficiency drive and low-jerk mode switch in FRMDEVs, a drive control strategy is proposed, consisting of top-layer torque distribution aimed at optimal efficiency and low-layer coordination control improving mode-switch jerk. First, with the use of the off-line particle swarm optimization algorithm (PSOA), the optimal switching boundary between single-motor-drive mode (SMDM) and dual-motor drive mode (DMDM) was modelled and a real-time torque distribution model based on the radial basis function (RBF) was created to achieve the optimal torque distribution. Then, referring to the dynamic characteristics of mode switch tested on a dual-motor test bench, a torque coordination strategy by controlling the variation rate of the torque distribution coefficient during the mode-switch process was developed. Finally, based on a hardware-in-loop (HIL) test platform and an FRMDEV, the proposed drive control strategy was verified. The test results show that both drive economy and comfort were improved significantly by the use of the developed drive control strategy
    • …
    corecore